BioAgents: Democratizing Bioinformatics Analysis with Multi-Agent Systems
- URL: http://arxiv.org/abs/2501.06314v1
- Date: Fri, 10 Jan 2025 19:30:59 GMT
- Title: BioAgents: Democratizing Bioinformatics Analysis with Multi-Agent Systems
- Authors: Nikita Mehandru, Amanda K. Hall, Olesya Melnichenko, Yulia Dubinina, Daniel Tsirulnikov, David Bamman, Ahmed Alaa, Scott Saponas, Venkat S. Malladi,
- Abstract summary: We propose a multi-agent system built on small language models, fine-tuned on bioinformatics data, and enhanced with retrieval augmented generation (RAG)
Our system, BioAgents, enables local operation and personalization using proprietary data.
We observe performance comparable to human experts on conceptual genomics tasks, and suggest next steps to enhance code generation capabilities.
- Score: 6.668992155393883
- License:
- Abstract: Creating end-to-end bioinformatics workflows requires diverse domain expertise, which poses challenges for both junior and senior researchers as it demands a deep understanding of both genomics concepts and computational techniques. While large language models (LLMs) provide some assistance, they often fall short in providing the nuanced guidance needed to execute complex bioinformatics tasks, and require expensive computing resources to achieve high performance. We thus propose a multi-agent system built on small language models, fine-tuned on bioinformatics data, and enhanced with retrieval augmented generation (RAG). Our system, BioAgents, enables local operation and personalization using proprietary data. We observe performance comparable to human experts on conceptual genomics tasks, and suggest next steps to enhance code generation capabilities.
Related papers
- Large Language Models for Bioinformatics [58.892165394487414]
This survey focuses on the evolution, classification, and distinguishing features of bioinformatics-specific language models (BioLMs)
We explore the wide-ranging applications of BioLMs in critical areas such as disease diagnosis, drug discovery, and vaccine development.
We identify key challenges and limitations inherent in BioLMs, including data privacy and security concerns, interpretability issues, biases in training data and model outputs, and domain adaptation complexities.
arXiv Detail & Related papers (2025-01-10T01:43:05Z) - Language Model Powered Digital Biology with BRAD [5.309032614374711]
Large Language Models (LLMs) are well-suited for unstructured integration.
We present a prototype Bioinformatics Retrieval Augmented Digital assistant (BRAD)
arXiv Detail & Related papers (2024-09-04T16:43:14Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - Empowering Biomedical Discovery with AI Agents [15.125735219811268]
We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
arXiv Detail & Related papers (2024-04-03T16:08:01Z) - Hyperdimensional computing: a fast, robust and interpretable paradigm
for biological data [9.094234519404907]
New algorithms for processing diverse biological data sources have revolutionized bioinformatics.
Deep learning has substantially transformed bioinformatics, addressing sequence, structure, and functional analyses.
Hyperdimensional computing has emerged as an intriguing alternative.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - An Evaluation of Large Language Models in Bioinformatics Research [52.100233156012756]
We study the performance of large language models (LLMs) on a wide spectrum of crucial bioinformatics tasks.
These tasks include the identification of potential coding regions, extraction of named entities for genes and proteins, detection of antimicrobial and anti-cancer peptides, molecular optimization, and resolution of educational bioinformatics problems.
Our findings indicate that, given appropriate prompts, LLMs like GPT variants can successfully handle most of these tasks.
arXiv Detail & Related papers (2024-02-21T11:27:31Z) - Advancing bioinformatics with large language models: components, applications and perspectives [12.728981464533918]
Large language models (LLMs) are a class of artificial intelligence models based on deep learning.
We will provide a comprehensive overview of the essential components of large language models (LLMs) in bioinformatics.
Key aspects covered include tokenization methods for diverse data types, the architecture of transformer models, and the core attention mechanism.
arXiv Detail & Related papers (2024-01-08T17:26:59Z) - Diversifying Knowledge Enhancement of Biomedical Language Models using
Adapter Modules and Knowledge Graphs [54.223394825528665]
We develop an approach that uses lightweight adapter modules to inject structured biomedical knowledge into pre-trained language models.
We use two large KGs, the biomedical knowledge system UMLS and the novel biochemical OntoChem, with two prominent biomedical PLMs, PubMedBERT and BioLinkBERT.
We show that our methodology leads to performance improvements in several instances while keeping requirements in computing power low.
arXiv Detail & Related papers (2023-12-21T14:26:57Z) - ProBio: A Protocol-guided Multimodal Dataset for Molecular Biology Lab [67.24684071577211]
The challenge of replicating research results has posed a significant impediment to the field of molecular biology.
We first curate a comprehensive multimodal dataset, named ProBio, as an initial step towards this objective.
Next, we devise two challenging benchmarks, transparent solution tracking and multimodal action recognition, to emphasize the unique characteristics and difficulties associated with activity understanding in BioLab settings.
arXiv Detail & Related papers (2023-11-01T14:44:01Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.