Empowering Biomedical Discovery with AI Agents
- URL: http://arxiv.org/abs/2404.02831v2
- Date: Wed, 24 Jul 2024 20:31:52 GMT
- Title: Empowering Biomedical Discovery with AI Agents
- Authors: Shanghua Gao, Ada Fang, Yepeng Huang, Valentina Giunchiglia, Ayush Noori, Jonathan Richard Schwarz, Yasha Ektefaie, Jovana Kondic, Marinka Zitnik,
- Abstract summary: We envision "AI scientists" as systems capable of skeptical learning and reasoning.
Biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets.
AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
- Score: 15.125735219811268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We envision "AI scientists" as systems capable of skeptical learning and reasoning that empower biomedical research through collaborative agents that integrate AI models and biomedical tools with experimental platforms. Rather than taking humans out of the discovery process, biomedical AI agents combine human creativity and expertise with AI's ability to analyze large datasets, navigate hypothesis spaces, and execute repetitive tasks. AI agents are poised to be proficient in various tasks, planning discovery workflows and performing self-assessment to identify and mitigate gaps in their knowledge. These agents use large language models and generative models to feature structured memory for continual learning and use machine learning tools to incorporate scientific knowledge, biological principles, and theories. AI agents can impact areas ranging from virtual cell simulation, programmable control of phenotypes, and the design of cellular circuits to developing new therapies.
Related papers
- How to Build the Virtual Cell with Artificial Intelligence: Priorities and Opportunities [46.671834972945874]
We propose a vision of leveraging advances in AI to construct virtual cells.
We discuss desired capabilities of such AI Virtual Cells, including generating universal representations of biological entities.
We envision a future where AI Virtual Cells help identify new drug targets, predict cellular responses to perturbations, as well as scale hypothesis exploration.
arXiv Detail & Related papers (2024-09-18T02:41:50Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
A key challenge in artificial intelligence is the creation of systems capable of autonomously advancing scientific understanding.
We present SciAgents, an approach that leverages three core concepts.
The framework autonomously generates and refines research hypotheses, elucidating underlying mechanisms, design principles, and unexpected material properties.
Our case studies demonstrate scalable capabilities to combine generative AI, ontological representations, and multi-agent modeling, harnessing a swarm of intelligence' similar to biological systems.
arXiv Detail & Related papers (2024-09-09T12:25:10Z) - Computing in the Life Sciences: From Early Algorithms to Modern AI [45.74830585715129]
This paper highlights key milestones and technological advancements through the historical development of computing in the life sciences.
The discussion includes the inception of computational models for biological processes, the advent of bioinformatics tools, and the integration of AI/ML in modern life sciences research.
Attention is given to AI-enabled tools used in the life sciences, such as scientific large language models and bio-AI tools, examining their capabilities, limitations, and impact to biological risk.
arXiv Detail & Related papers (2024-06-17T21:36:52Z) - BioDiscoveryAgent: An AI Agent for Designing Genetic Perturbation Experiments [112.25067497985447]
We introduce BioDiscoveryAgent, an agent that designs new experiments, reasons about their outcomes, and efficiently navigates the hypothesis space to reach desired solutions.
BioDiscoveryAgent can uniquely design new experiments without the need to train a machine learning model.
It achieves an average of 21% improvement in predicting relevant genetic perturbations across six datasets.
arXiv Detail & Related papers (2024-05-27T19:57:17Z) - EndToEndML: An Open-Source End-to-End Pipeline for Machine Learning Applications [0.2826977330147589]
We propose a web-based end-to-end pipeline that is capable of preprocessing, training, evaluating, and visualizing machine learning models.
Our library assists in recognizing, classifying, clustering, and predicting a wide range of multi-modal, multi-sensor datasets.
arXiv Detail & Related papers (2024-03-27T02:24:38Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
Recent advances in machine learning and AI are disrupting technological innovation, product development, and society as a whole.
AI has contributed less to fundamental science in part because large data sets of high-quality data for scientific practice and model discovery are more difficult to access.
Here we explore and investigate aspects of an AI-driven, automated, closed-loop approach to scientific discovery.
arXiv Detail & Related papers (2023-07-09T21:16:56Z) - BiomedGPT: A Generalist Vision-Language Foundation Model for Diverse Biomedical Tasks [68.39821375903591]
Generalist AI holds the potential to address limitations due to its versatility in interpreting different data types.
Here, we propose BiomedGPT, the first open-source and lightweight vision-language foundation model.
arXiv Detail & Related papers (2023-05-26T17:14:43Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Learning from learning machines: a new generation of AI technology to
meet the needs of science [59.261050918992325]
We outline emerging opportunities and challenges to enhance the utility of AI for scientific discovery.
The distinct goals of AI for industry versus the goals of AI for science create tension between identifying patterns in data versus discovering patterns in the world from data.
arXiv Detail & Related papers (2021-11-27T00:55:21Z) - Automated Biodesign Engineering by Abductive Meta-Interpretive Learning [8.788941848262786]
We propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
In this work, we propose an automated biodesign engineering framework empowered by Abductive Meta-Interpretive Learning ($Meta_Abd$)
arXiv Detail & Related papers (2021-05-17T12:10:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.