論文の概要: Unispeaker: A Unified Approach for Multimodality-driven Speaker Generation
- arxiv url: http://arxiv.org/abs/2501.06394v1
- Date: Sat, 11 Jan 2025 00:47:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:22:00.328771
- Title: Unispeaker: A Unified Approach for Multimodality-driven Speaker Generation
- Title(参考訳): Unispeaker: マルチモーダリティ駆動型話者生成のための統一的アプローチ
- Authors: Zhengyan Sheng, Zhihao Du, Heng Lu, Shiliang Zhang, Zhen-Hua Ling,
- Abstract要約: 本稿では,マルチモーダリティ駆動型話者生成のための統一的アプローチであるUniSpeakerを紹介する。
KV-Formerに基づく統一音声アグリゲータを提案し、多様な音声記述のモダリティを共有音声空間にマッピングするためにソフトコントラストロスを適用した。
UniSpeakerはMVCベンチマークを用いて5つのタスクで評価され、実験結果により、UniSpeakerは従来のモダリティ固有のモデルよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 66.49076386263509
- License:
- Abstract: Recent advancements in personalized speech generation have brought synthetic speech increasingly close to the realism of target speakers' recordings, yet multimodal speaker generation remains on the rise. This paper introduces UniSpeaker, a unified approach for multimodality-driven speaker generation. Specifically, we propose a unified voice aggregator based on KV-Former, applying soft contrastive loss to map diverse voice description modalities into a shared voice space, ensuring that the generated voice aligns more closely with the input descriptions. To evaluate multimodality-driven voice control, we build the first multimodality-based voice control (MVC) benchmark, focusing on voice suitability, voice diversity, and speech quality. UniSpeaker is evaluated across five tasks using the MVC benchmark, and the experimental results demonstrate that UniSpeaker outperforms previous modality-specific models. Speech samples are available at \url{https://UniSpeaker.github.io}.
- Abstract(参考訳): 近年のパーソナライズされた音声生成の進歩により、合成音声はターゲット話者の録音のリアリズムに近づきつつあるが、マルチモーダル話者生成は増加傾向にある。
本稿では,マルチモーダリティ駆動型話者生成のための統一的アプローチであるUniSpeakerを紹介する。
具体的には、KV-Formerに基づく統一音声アグリゲータを提案し、多様な音声記述のモダリティを共有音声空間にマッピングするためにソフトコントラストロスを適用し、生成した音声が入力記述とより密に一致することを保証する。
マルチモーダリティ駆動型音声制御を評価するため,音声適合性,音声多様性,音声品質に着目した,最初のマルチモーダリティベース音声制御(MVC)ベンチマークを構築した。
UniSpeakerはMVCベンチマークを用いて5つのタスクで評価され、実験結果により、UniSpeakerは従来のモダリティ固有のモデルよりも優れていることが示された。
音声サンプルは \url{https://UniSpeaker.github.io} で公開されている。
関連論文リスト
- End-to-End Single-Channel Speaker-Turn Aware Conversational Speech
Translation [23.895122319920997]
エンド・ツー・エンドおよびマルチタスク・トレーニングモデルを用いて、単一チャンネルのマルチ話者会話STに取り組む。
Speaker-Turn Aware Conversational Speech Translationは、音声認識、音声翻訳、話者のターン検出を組み合わせる。
本研究では,本モデルがマルチスピーカ条件で参照システムより優れ,単一スピーカ条件で同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2023-11-01T17:55:09Z) - ERNIE-SAT: Speech and Text Joint Pretraining for Cross-Lingual
Multi-Speaker Text-to-Speech [58.93395189153713]
言語間複数話者音声合成タスクの事前学習法を拡張した。
本稿では,スペクトルと音素をランダムにマスキングする,音声・テキスト共同事前学習フレームワークを提案する。
本モデルは,話者埋め込み型マルチスピーカTS法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-07T13:35:16Z) - Self supervised learning for robust voice cloning [3.7989740031754806]
自己教師型フレームワークで学習した特徴を用いて,高品質な音声表現を生成する。
学習した特徴は、事前訓練された発話レベルの埋め込みや、非減衰タコトロンアーキテクチャへの入力として使用される。
この手法により、ラベルなしマルチスピーカデータセットでモデルをトレーニングし、未知の話者埋め込みを用いて話者の声を模倣することができる。
論文 参考訳(メタデータ) (2022-04-07T13:05:24Z) - Streaming Speaker-Attributed ASR with Token-Level Speaker Embeddings [53.11450530896623]
本稿では,「誰が何を話したか」を認識可能な,ストリーミング話者対応自動音声認識(SA-ASR)モデルを提案する。
本モデルは,最近提案されたマルチトーカー音声をストリーミング形式で書き起こすためのトークンレベルシリアライズアウトプットトレーニング(t-SOT)に基づいている。
提案モデルでは,従来のストリーミングモデルよりも精度が大幅に向上し,最先端のオフラインSA-ASRモデルに匹敵する,あるいは時として優れた結果が得られる。
論文 参考訳(メタデータ) (2022-03-30T21:42:00Z) - GANSpeech: Adversarial Training for High-Fidelity Multi-Speaker Speech
Synthesis [6.632254395574993]
GANSpeechは、非自己回帰型マルチスピーカTSモデルに対向訓練法を採用する高忠実度マルチスピーカTSモデルである。
主観的な聴取試験では、GANSpeechはベースラインのマルチスピーカーであるFastSpeechとFastSpeech2モデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2021-06-29T08:15:30Z) - Investigating on Incorporating Pretrained and Learnable Speaker
Representations for Multi-Speaker Multi-Style Text-to-Speech [54.75722224061665]
本研究では,異なる話者表現を調査し,事前学習可能な話者表現を統合することを提案する。
FastSpeech 2モデルと事前訓練された話者表現と学習可能な話者表現を組み合わせることで、少数の話者に対して大きな一般化能力を示す。
論文 参考訳(メタデータ) (2021-03-06T10:14:33Z) - Joint Speaker Counting, Speech Recognition, and Speaker Identification
for Overlapped Speech of Any Number of Speakers [38.3469744871394]
エンドツーエンドの話者分散音声認識モデルを提案する。
重複した音声における話者カウント、音声認識、話者識別を統一する。
論文 参考訳(メタデータ) (2020-06-19T02:05:18Z) - Semi-supervised Learning for Multi-speaker Text-to-speech Synthesis
Using Discrete Speech Representation [125.59372403631006]
マルチ話者テキスト音声(TTS)のための半教師付き学習手法を提案する。
マルチスピーカTTSモデルは、離散音声表現を備えたエンコーダデコーダフレームワークを用いて、未転写音声から学習することができる。
提案した半教師あり学習手法は,音声データの一部がうるさい場合にも有効であることがわかった。
論文 参考訳(メタデータ) (2020-05-16T15:47:11Z) - Voice Separation with an Unknown Number of Multiple Speakers [113.91855071999298]
本稿では,複数の音声が同時に発声する混合音声系列を分離する手法を提案する。
新たな手法では、複数の処理ステップで音声を分離するように訓練されたゲートニューラルネットワークを使用し、各出力チャネルに固定された話者を維持する。
論文 参考訳(メタデータ) (2020-02-29T20:02:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。