AlgoPilot: Fully Autonomous Program Synthesis Without Human-Written Programs
- URL: http://arxiv.org/abs/2501.06423v1
- Date: Sat, 11 Jan 2025 03:29:14 GMT
- Title: AlgoPilot: Fully Autonomous Program Synthesis Without Human-Written Programs
- Authors: Xiaoxin Yin,
- Abstract summary: We introduce AlgoPilot, a groundbreaking approach for fully automated program synthesis without human-written programs or trajectories.
AlgoPilot leverages reinforcement learning guided by a Trajectory Language Model (TLM) to synthesize algorithms from scratch.
This work establishes a new paradigm for algorithm discovery and lays the groundwork for future advancements in autonomous program synthesis.
- Score: 0.0
- License:
- Abstract: Program synthesis has traditionally relied on human-provided specifications, examples, or prior knowledge to generate functional algorithms. Existing methods either emulate human-written algorithms or solve specific tasks without generating reusable programmatic logic, limiting their ability to create novel algorithms. We introduce AlgoPilot, a groundbreaking approach for fully automated program synthesis without human-written programs or trajectories. AlgoPilot leverages reinforcement learning (RL) guided by a Trajectory Language Model (TLM) to synthesize algorithms from scratch. The TLM, trained on trajectories generated by random Python functions, serves as a soft constraint during the RL process, aligning generated sequences with patterns likely to represent valid algorithms. Using sorting as a test case, AlgoPilot demonstrates its ability to generate trajectories that are interpretable as classical algorithms, such as Bubble Sort, while operating without prior algorithmic knowledge. This work establishes a new paradigm for algorithm discovery and lays the groundwork for future advancements in autonomous program synthesis.
Related papers
- Searching Latent Program Spaces [0.0]
We propose an algorithm for program induction that learns a distribution over latent programs in a continuous space, enabling efficient search and test-time adaptation.
We show that can generalize beyond its training distribution and adapt to unseen tasks by utilizing test-time adaptation mechanisms.
arXiv Detail & Related papers (2024-11-13T15:50:32Z) - Searching for More Efficient Dynamic Programs [61.79535031840558]
We describe a set of program transformations, a simple metric for assessing the efficiency of a transformed program, and a search procedure to improve this metric.
We show that in practice, automated search can find substantial improvements to the initial program.
arXiv Detail & Related papers (2021-09-14T20:52:55Z) - Waypoint Planning Networks [66.72790309889432]
We propose a hybrid algorithm based on LSTMs with a local kernel - a classic algorithm such as A*, and a global kernel using a learned algorithm.
We compare WPN against A*, as well as related works including motion planning networks (MPNet) and value networks (VIN)
It is shown that WPN's search space is considerably less than A*, while being able to generate near optimal results.
arXiv Detail & Related papers (2021-05-01T18:02:01Z) - Meta-Learning an Inference Algorithm for Probabilistic Programs [13.528656805820459]
We present a meta-algorithm for learning a posterior-inference algorithm for restricted probabilistic programs.
Key feature of our approach is the use of a white-box inference algorithm that extracts information directly from model descriptions.
arXiv Detail & Related papers (2021-03-01T04:05:11Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
We propose a method for meta-learning reinforcement learning algorithms.
The learned algorithms are domain-agnostic and can generalize to new environments not seen during training.
We highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games.
arXiv Detail & Related papers (2021-01-08T18:55:07Z) - Process Discovery for Structured Program Synthesis [70.29027202357385]
A core task in process mining is process discovery which aims to learn an accurate process model from event log data.
In this paper, we propose to use (block-) structured programs directly as target process models.
We develop a novel bottom-up agglomerative approach to the discovery of such structured program process models.
arXiv Detail & Related papers (2020-08-13T10:33:10Z) - Learning Differentiable Programs with Admissible Neural Heuristics [43.54820901841979]
We study the problem of learning differentiable functions expressed as programs in a domain-specific language.
We frame this optimization problem as a search in a weighted graph whose paths encode top-down derivations of program syntax.
Our key innovation is to view various classes of neural networks as continuous relaxations over the space of programs.
arXiv Detail & Related papers (2020-07-23T16:07:39Z) - Discovering Reinforcement Learning Algorithms [53.72358280495428]
Reinforcement learning algorithms update an agent's parameters according to one of several possible rules.
This paper introduces a new meta-learning approach that discovers an entire update rule.
It includes both 'what to predict' (e.g. value functions) and 'how to learn from it' by interacting with a set of environments.
arXiv Detail & Related papers (2020-07-17T07:38:39Z) - Strong Generalization and Efficiency in Neural Programs [69.18742158883869]
We study the problem of learning efficient algorithms that strongly generalize in the framework of neural program induction.
By carefully designing the input / output interfaces of the neural model and through imitation, we are able to learn models that produce correct results for arbitrary input sizes.
arXiv Detail & Related papers (2020-07-07T17:03:02Z) - Combining Geometric and Information-Theoretic Approaches for Multi-Robot
Exploration [16.010307336422148]
We show that the exploration time of our algorithm is competitive (as a function of $p$) with respect to the offline optimal exploration algorithm.
The algorithm is based on a single-robot polygon exploration algorithm, a tree exploration algorithm for higher level planning and a submodular orienteering algorithm for lower level planning.
arXiv Detail & Related papers (2020-04-15T02:02:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.