Discovering an Image-Adaptive Coordinate System for Photography Processing
- URL: http://arxiv.org/abs/2501.06448v1
- Date: Sat, 11 Jan 2025 06:20:07 GMT
- Title: Discovering an Image-Adaptive Coordinate System for Photography Processing
- Authors: Ziteng Cui, Lin Gu, Tatsuya Harada,
- Abstract summary: We propose a novel algorithm, IAC, to learn an image-adaptive coordinate system in the RGB color space before performing curve operations.
This end-to-end trainable approach enables us to efficiently adjust images with a jointly learned image-adaptive coordinate system and curves.
- Score: 51.164345878060956
- License:
- Abstract: Curve & Lookup Table (LUT) based methods directly map a pixel to the target output, making them highly efficient tools for real-time photography processing. However, due to extreme memory complexity to learn full RGB space mapping, existing methods either sample a discretized 3D lattice to build a 3D LUT or decompose into three separate curves (1D LUTs) on the RGB channels. Here, we propose a novel algorithm, IAC, to learn an image-adaptive Cartesian coordinate system in the RGB color space before performing curve operations. This end-to-end trainable approach enables us to efficiently adjust images with a jointly learned image-adaptive coordinate system and curves. Experimental results demonstrate that this simple strategy achieves state-of-the-art (SOTA) performance in various photography processing tasks, including photo retouching, exposure correction, and white-balance editing, while also maintaining a lightweight design and fast inference speed.
Related papers
- 3D Gaussian Editing with A Single Image [19.662680524312027]
We introduce a novel single-image-driven 3D scene editing approach based on 3D Gaussian Splatting.
Our method learns to optimize the 3D Gaussians to align with an edited version of the image rendered from a user-specified viewpoint.
Experiments show the effectiveness of our method in handling geometric details, long-range, and non-rigid deformation.
arXiv Detail & Related papers (2024-08-14T13:17:42Z) - Sketch3D: Style-Consistent Guidance for Sketch-to-3D Generation [55.73399465968594]
This paper proposes a novel generation paradigm Sketch3D to generate realistic 3D assets with shape aligned with the input sketch and color matching the textual description.
Three strategies are designed to optimize 3D Gaussians, i.e., structural optimization via a distribution transfer mechanism, color optimization with a straightforward MSE loss and sketch similarity optimization with a CLIP-based geometric similarity loss.
arXiv Detail & Related papers (2024-04-02T11:03:24Z) - 3DGS-ReLoc: 3D Gaussian Splatting for Map Representation and Visual ReLocalization [13.868258945395326]
This paper presents a novel system designed for 3D mapping and visual relocalization using 3D Gaussian Splatting.
Our proposed method uses LiDAR and camera data to create accurate and visually plausible representations of the environment.
arXiv Detail & Related papers (2024-03-17T23:06:12Z) - GIR: 3D Gaussian Inverse Rendering for Relightable Scene Factorization [62.13932669494098]
This paper presents a 3D Gaussian Inverse Rendering (GIR) method, employing 3D Gaussian representations to factorize the scene into material properties, light, and geometry.
We compute the normal of each 3D Gaussian using the shortest eigenvector, with a directional masking scheme forcing accurate normal estimation without external supervision.
We adopt an efficient voxel-based indirect illumination tracing scheme that stores direction-aware outgoing radiance in each 3D Gaussian to disentangle secondary illumination for approximating multi-bounce light transport.
arXiv Detail & Related papers (2023-12-08T16:05:15Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - Deterministic Neural Illumination Mapping for Efficient Auto-White
Balance Correction [3.441021278275805]
Auto-white balance (AWB) correction is a critical operation in image signal processors for accurate and consistent color correction across various illumination scenarios.
This paper presents a novel and efficient AWB correction method that achieves at least 35 times faster processing with equivalent or superior performance on high-resolution images.
arXiv Detail & Related papers (2023-08-07T22:44:26Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Self-Aligning Depth-regularized Radiance Fields for Asynchronous RGB-D Sequences [12.799443250845224]
We propose a novel time-pose function, which is an implicit network that maps timestamps to $rm SE(3)$ elements.
Our algorithm consists of three steps: (1) time-pose function fitting, (2) radiance field bootstrapping, (3) joint pose error compensation and radiance field refinement.
We also show qualitatively improved results on a real-world asynchronous RGB-D sequence captured by drone.
arXiv Detail & Related papers (2022-11-14T15:37:27Z) - SepLUT: Separable Image-adaptive Lookup Tables for Real-time Image
Enhancement [21.963622337032344]
We present SepLUT (separable image-adaptive lookup table) to tackle the above limitations.
Specifically, we separate a single color transform into a cascade of component-independent and component-correlated sub-transforms instantiated as 1D and 3D LUTs.
In this way, the capabilities of two sub-transforms can facilitate each other, where the 3D LUT complements the ability to mix up color components.
arXiv Detail & Related papers (2022-07-18T02:27:19Z) - Lightweight Multi-View 3D Pose Estimation through Camera-Disentangled
Representation [57.11299763566534]
We present a solution to recover 3D pose from multi-view images captured with spatially calibrated cameras.
We exploit 3D geometry to fuse input images into a unified latent representation of pose, which is disentangled from camera view-points.
Our architecture then conditions the learned representation on camera projection operators to produce accurate per-view 2d detections.
arXiv Detail & Related papers (2020-04-05T12:52:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.