論文の概要: The Internet of Large Language Models: An Orchestration Framework for LLM Training and Knowledge Exchange Toward Artificial General Intelligence
- arxiv url: http://arxiv.org/abs/2501.06471v1
- Date: Sat, 11 Jan 2025 08:00:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:25:42.432942
- Title: The Internet of Large Language Models: An Orchestration Framework for LLM Training and Knowledge Exchange Toward Artificial General Intelligence
- Title(参考訳): 大規模言語モデルのインターネット:LLMトレーニングのためのオーケストレーションフレームワークと人工知能に向けた知識交換
- Authors: Wilson Wei, Nicholas Chen, Yuxuan Li,
- Abstract要約: 本稿では,大規模言語モデル(LLM)の開発において直面する多次元課題について考察する。
これらの課題に対処するために, LLM共有プロトコル, LLMユニバーサル環境フレームワーク, エージェント最適経路モジュールの3つのコア技術ソリューションを提案する。
- 参考スコア(独自算出の注目度): 4.403567403521342
- License:
- Abstract: This paper explores the multi-dimensional challenges faced during the development of Large Language Models (LLMs), including the massive scale of model parameters and file sizes, the complexity of development environment configuration, the singularity of model functionality, and the high costs of computational resources. To address these challenges, this paper proposes three core technical solutions: LLM sharing protocol, LLM universal environment framework, and Agent optimal path module. To solve the computational resource constraints in the early stages of research, we further innovatively propose a joint mining mechanism, achieving bilateral value sharing between computing power providers and model designers, including breakthrough rewards for optimal model paths and long-term profit distribution, thereby providing researchers with cost-optimized computational resource support and promoting the continuous development of LLM research and applications.
- Abstract(参考訳): 本稿では,大規模言語モデル(LLM)の開発において直面する多次元的課題について考察する。モデルパラメータとファイルサイズ,開発環境構成の複雑さ,モデル機能の特異性,計算資源の高コスト化などである。
これらの課題に対処するために, LLM共有プロトコル, LLMユニバーサル環境フレームワーク, エージェント最適経路モジュールの3つのコア技術ソリューションを提案する。
研究の初期段階における計算資源の制約を解決するため,我々は,最適モデルパスと長期利益分配に対するブレークスルー報酬を含む,コンピューティングパワープロバイダとモデルデザイナの双方向価値共有を実現する共同マイニング機構を革新的に提案し,コスト最適化された計算資源支援とLLM研究とアプリケーションの継続的な開発を促進する。
関連論文リスト
- Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - A Survey: Collaborative Hardware and Software Design in the Era of Large Language Models [16.250856588632637]
大規模言語モデル(LLM)の急速な発展は、人工知能の分野を大きく変えた。
これらのモデルは多様なアプリケーションに統合され、研究と産業の両方に影響を及ぼす。
本稿では,大規模言語モデルの特徴と制約に対処するために,ハードウェアとソフトウェアの共同設計手法について検討する。
論文 参考訳(メタデータ) (2024-10-08T21:46:52Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
検索エンハンスメントは機械学習(ML)の幅広い範囲に拡張できる
この研究は、MLの様々な領域の文献を、現在の文献から欠落している一貫した表記で合成することで、このパラダイムの正式なフレームワークであるRetrieval-Enhanced Machine Learning (REML)を導入する。
本研究の目的は、様々な分野の研究者に対して、検索強化モデルの包括的、正式に構造化された枠組みを付与し、学際的な将来の研究を促進することである。
論文 参考訳(メタデータ) (2024-07-17T20:01:21Z) - Solution-oriented Agent-based Models Generation with Verifier-assisted
Iterative In-context Learning [10.67134969207797]
エージェントベースのモデル(ABM)は、仮説的な解決策やポリシーの提案と検証に不可欠なパラダイムである。
大きな言語モデル(LLM)は、ドメイン間の知識とプログラミング能力をカプセル化することで、このプロセスの難しさを軽減できる可能性がある。
SAGEは、ターゲット問題に対する自動モデリングおよびソリューション生成のために設計された、汎用的なソリューション指向のABM生成フレームワークである。
論文 参考訳(メタデータ) (2024-02-04T07:59:06Z) - Large Multi-Modal Models (LMMs) as Universal Foundation Models for
AI-Native Wireless Systems [57.41621687431203]
大規模言語モデル (LLM) と基礎モデルは6Gシステムのゲームチェンジャーとして最近注目されている。
本稿では,人工知能(AI)ネイティブネットワークの展開に適したユニバーサルファンデーションモデルを設計するための包括的ビジョンを提案する。
論文 参考訳(メタデータ) (2024-01-30T00:21:41Z) - A Survey of Resource-efficient LLM and Multimodal Foundation Models [22.23967603206849]
大規模言語モデル(LLM)、ビジョントランスフォーマー(ViT)、拡散、マルチモーダルモデルを含む大規模な基盤モデルは、機械学習ライフサイクル全体に革命をもたらしている。
しかしながら、これらのモデルが提供する汎用性と性能の大幅な進歩は、ハードウェアリソースの面でかなりのコストがかかる。
この調査は、アルゴリズム的側面とシステム的側面の両方を調べることで、そのような研究の重要さを掘り下げるものである。
論文 参考訳(メタデータ) (2024-01-16T03:35:26Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Beyond Efficiency: A Systematic Survey of Resource-Efficient Large Language Models [32.774929826684854]
LLM(Large Language Models)は、計算、メモリ、エネルギー、金融資源の高消費に課題をもたらす。
本調査は, LLMの資源効率向上を目的とした多種多様な手法を概観することにより, これらの課題を体系的に解決することを目的としている。
論文 参考訳(メタデータ) (2024-01-01T01:12:42Z) - The Efficiency Spectrum of Large Language Models: An Algorithmic Survey [54.19942426544731]
LLM(Large Language Models)の急速な成長は、様々なドメインを変換する原動力となっている。
本稿では,LLMのエンドツーエンドのアルゴリズム開発に不可欠な多面的効率性について検討する。
論文 参考訳(メタデータ) (2023-12-01T16:00:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。