Fermion as a non-local particle-hole excitation
- URL: http://arxiv.org/abs/2501.06489v1
- Date: Sat, 11 Jan 2025 09:17:50 GMT
- Title: Fermion as a non-local particle-hole excitation
- Authors: Alok Kushwaha, Rishi Paresh Joshi, Girish Sampath Setlur,
- Abstract summary: We show that the fermion may itself be thought of as a collection of non-local particle-hole excitations across this Fermi surface.
We are able to derive the full single-particle dynamical Green function of this fermion at finite temperature.
- Score: 0.0
- License:
- Abstract: We show that the fermion, in the context of a system that comprises many such entities - which, by virtue of the Pauli exclusion principle, possesses a Fermi surface at zero temperature - may itself be thought of as a collection of non-local particle-hole excitations across this Fermi surface. This result is purely kinematical and completely general - not being restricted to any specific dimension, applicable to both continuum and lattice systems. There is also no implication that it is applicable only to low-energy phenomena close to the Fermi surface. We are able to derive the full single-particle dynamical Green function of this fermion at finite temperature by viewing it as a collection of these non-local particle-hole excitations. The Green function of the fermion then manifests itself as a solution to a first-order differential equation in a parameter that controls the number of particle-hole pairs across the Fermi surface, and this equation itself reveals variable coefficients that may be identified with a Bose-Einstein distribution - implying that there is a sense in which the non-local particle-hole excitations have bosonic qualities while not being exact bosons at the level of operators. We also recall the definition of the non-local particle-hole operator that may be used to diagonalize the kinetic energy of free fermions of the sort mentioned above. Number-conserving products of creation and annihilation operators of fermions are expressible as a (rather complicated) combination of these non-local particle-hole operators.
Related papers
- Thermodynamics of free bosons and fermions in the hyperball [0.0]
Many-particle systems pose commonly known computational challenges in quantum theory.
We address the case of a finite number of particles N, either bosons or fermions, in the spherical potential box.
We are dealing with particles carrying a well-defined angular momentum that, together with sorted energy eigenvalues, imparts a shell structure to the system.
arXiv Detail & Related papers (2025-02-05T16:50:07Z) - Non-Bloch self-energy of dissipative interacting fermions [4.41737598556146]
The non-Hermitian skin effect describes the phenomenon of exponential localization of single-particle eigenstates near the boundary of the system.
We explore its generalization to the many-body regime by investigating interacting fermions in open quantum systems.
Our formulation provides a quantitative tool for investigating dissipative interacting fermions with non-Hermitian skin effect.
arXiv Detail & Related papers (2024-11-20T19:08:24Z) - Generalization of exact operators of the Foldy-Wouthuysen transformation to arbitrary-spin particles in nonstationary fields [55.2480439325792]
We use the Foldy-Wouthuysen representation which allows one to obtain the Schr"odinger picture of relativistic quantum mechanics.
We determine exact nonexponential and exponential operators of the Foldy-Wouthuysen transformation for arbitrary-spin particles in the nonstationary case.
arXiv Detail & Related papers (2024-10-27T18:41:50Z) - A non-hermitean momentum operator for the particle in a box [49.1574468325115]
We show how to construct the corresponding hermitean Hamiltonian for the infinite as well as concrete example.
The resulting Hilbert space can be decomposed into a physical and unphysical subspace.
arXiv Detail & Related papers (2024-03-20T12:51:58Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Particle exchange statistics beyond fermions and bosons [12.031278034659872]
It is commonly believed that there are only two types of particle exchange statistics in quantum mechanics, fermions and bosons.
We show that non parastatistics inequivalent to either fermions or bosons can exist in physical systems.
arXiv Detail & Related papers (2023-08-09T19:51:07Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Fermion production at the boundary of an expanding universe: a cold-atom
gravitational analogue [68.8204255655161]
We study the phenomenon of cosmological particle production of Dirac fermions in a Friedman-Robertson-Walker spacetime.
We present a scheme for the quantum simulation of this gravitational analogue by means of ultra-cold atoms in Raman optical lattices.
arXiv Detail & Related papers (2022-12-02T18:28:23Z) - Generalized Interference of Fermions and Bosons [0.0]
We derive expressions for the coincidence rate of partially-distinguishable particles in an interferometry experiment.
Our work aids the understanding of systems where an arbitrary level of distinguishability is permitted.
arXiv Detail & Related papers (2022-03-11T21:40:24Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Bose-Fermi dualities for arbitrary one-dimensional quantum systems in
the universal low energy regime [0.2741266294612775]
I consider general interacting systems of quantum particles in one spatial dimension.
These consist of bosons or fermions, which can have any number of components, arbitrary spin or a combination thereof.
The single-particle dispersion can be Galilean (non-relativistic), relativistic, or have any other form that may be relevant for the continuum limit of lattice theories.
arXiv Detail & Related papers (2020-09-01T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.