Resource Allocation under the Latin Square Constraint
- URL: http://arxiv.org/abs/2501.06506v1
- Date: Sat, 11 Jan 2025 10:53:48 GMT
- Title: Resource Allocation under the Latin Square Constraint
- Authors: Yasushi Kawase, Bodhayan Roy, Mohammad Azharuddin Sanpui,
- Abstract summary: We introduce a problem of allocating $n$ indivisible items among $n$ agents over $n$ rounds.
This constraint ensures that each agent receives no more than one item per round and receives each item at most once.
Real-world applications like scheduling, resource management, and experimental design require the Latin square constraint to satisfy fairness or balancedness in allocation.
- Score: 3.8028747063484585
- License:
- Abstract: A Latin square is an $n \times n$ matrix filled with $n$ distinct symbols, each of which appears exactly once in each row and exactly once in each column. We introduce a problem of allocating $n$ indivisible items among $n$ agents over $n$ rounds while satisfying the Latin square constraint. This constraint ensures that each agent receives no more than one item per round and receives each item at most once. Each agent has an additive valuation on the item--round pairs. Real-world applications like scheduling, resource management, and experimental design require the Latin square constraint to satisfy fairness or balancedness in allocation. Our goal is to find a partial or complete allocation that maximizes the sum of the agents' valuations (utilitarian social welfare) or the minimum of the agents' valuations (egalitarian social welfare). For the problem of maximizing utilitarian social welfare, we prove NP-hardness even when the valuations are binary additive. We then provide $(1-1/e)$ and $(1-1/e)/4$-approximation algorithms for partial and complete settings, respectively. Additionally, we present fixed-parameter tractable (FPT) algorithms with respect to the order of Latin square and the optimum value for both partial and complete settings. For the problem of maximizing egalitarian social welfare, we establish that deciding whether the optimum value is at most $1$ or at least $2$ is NP-hard for both the partial and complete settings, even when the valuations are binary. Furthermore, we demonstrate that checking the existence of a complete allocation that satisfies each of envy-free, proportional, equitable, envy-free up to any good, proportional up to any good, or equitable up to any good is NP-hard, even when the valuations are identical.
Related papers
- Nearly Minimax Optimal Regret for Learning Linear Mixture Stochastic
Shortest Path [80.60592344361073]
We study the Shortest Path (SSP) problem with a linear mixture transition kernel.
An agent repeatedly interacts with a environment and seeks to reach certain goal state while minimizing the cumulative cost.
Existing works often assume a strictly positive lower bound of the iteration cost function or an upper bound of the expected length for the optimal policy.
arXiv Detail & Related papers (2024-02-14T07:52:00Z) - Efficient Frameworks for Generalized Low-Rank Matrix Bandit Problems [61.85150061213987]
We study the generalized low-rank matrix bandit problem, proposed in citelu2021low under the Generalized Linear Model (GLM) framework.
To overcome the computational infeasibility and theoretical restrain of existing algorithms, we first propose the G-ESTT framework.
We show that G-ESTT can achieve the $tildeO(sqrt(d_1+d_2)3/2Mr3/2T)$ bound of regret while G-ESTS can achineve the $tildeO
arXiv Detail & Related papers (2024-01-14T14:14:19Z) - Combinatorial Stochastic-Greedy Bandit [79.1700188160944]
We propose a novelgreedy bandit (SGB) algorithm for multi-armed bandit problems when no extra information other than the joint reward of the selected set of $n$ arms at each time $tin [T]$ is observed.
SGB adopts an optimized-explore-then-commit approach and is specifically designed for scenarios with a large set of base arms.
arXiv Detail & Related papers (2023-12-13T11:08:25Z) - Dividing Good and Better Items Among Agents with Bivalued Submodular
Valuations [20.774185319381985]
We study the problem of fairly allocating a set of indivisible goods among agents with bivalued submodular valuations.
We show that neither the leximin nor the MNW allocation is guaranteed to be envy free up to one good.
arXiv Detail & Related papers (2023-02-06T19:41:28Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - Towards Painless Policy Optimization for Constrained MDPs [46.12526917024248]
We study policy optimization in an infinite horizon, $gamma$-discounted constrained Markov decision process (CMDP)
Our objective is to return a policy that achieves large expected reward with a small constraint violation.
We propose a generic primal-dual framework that allows us to bound the reward sub-optimality and constraint violation for arbitrary algorithms.
arXiv Detail & Related papers (2022-04-11T15:08:09Z) - Introducing the Expohedron for Efficient Pareto-optimal Fairness-Utility
Amortizations in Repeated Rankings [9.066817876491053]
We consider the problem of computing a sequence of rankings that maximizes consumer-side utility while minimizing producer-side individual unfairness of exposure.
We introduce a geometrical object, a polytope that we call expohedron, whose points represent all achievable exposures of items for a Position Based Model.
Our approach compares favorably to linear or quadratic programming baselines in terms of algorithmic complexity and empirical runtime.
Our solution can be expressed as a distribution over only $n$ permutations, instead of the $(n-1)2 + 1$ achieved with BvN decompositions.
arXiv Detail & Related papers (2022-02-07T14:43:35Z) - (Almost) Envy-Free, Proportional and Efficient Allocations of an
Indivisible Mixed Manna [10.933894827834825]
We study the problem of finding fair and efficient allocations of a set of indivisible items to a set of agents.
As fairness notions, we consider arguably the strongest possible relaxations of envy-freeness and proportionality.
arXiv Detail & Related papers (2022-02-06T01:29:50Z) - Near-Optimal Regret Bounds for Contextual Combinatorial Semi-Bandits
with Linear Payoff Functions [53.77572276969548]
We show that the C$2$UCB algorithm has the optimal regret bound $tildeO(dsqrtkT + dk)$ for the partition matroid constraints.
For general constraints, we propose an algorithm that modifies the reward estimates of arms in the C$2$UCB algorithm.
arXiv Detail & Related papers (2021-01-20T04:29:18Z) - Fully Gap-Dependent Bounds for Multinomial Logit Bandit [5.132017939561661]
We study the multinomial logit (MNL) bandit problem, where at each time step, the seller offers an assortment of size at most $K$ from a pool of $N$ items.
We present (i) an algorithm that identifies the optimal assortment $S*$ within $widetildeO(sum_i = 1N Delta_i-2)$ time steps with high probability, and (ii) an algorithm that incurs $O(sum_i notin S* KDelta_i
arXiv Detail & Related papers (2020-11-19T17:52:12Z) - Provably Efficient Safe Exploration via Primal-Dual Policy Optimization [105.7510838453122]
We study the Safe Reinforcement Learning (SRL) problem using the Constrained Markov Decision Process (CMDP) formulation.
We present an provably efficient online policy optimization algorithm for CMDP with safe exploration in the function approximation setting.
arXiv Detail & Related papers (2020-03-01T17:47:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.