Not real or too soft? On the challenges of publishing interdisciplinary software engineering research
- URL: http://arxiv.org/abs/2501.06523v1
- Date: Sat, 11 Jan 2025 12:18:46 GMT
- Title: Not real or too soft? On the challenges of publishing interdisciplinary software engineering research
- Authors: Sonja M. Hyrynsalmi, Grischa Liebel, Ronnie de Souza Santos, Sebastian Baltes,
- Abstract summary: Discipline of software engineering combines social and technological dimensions.
Interdisciplinary research submitted to software engineering venues may not receive the same level of recognition as more traditional or technical topics.
- Score: 4.597329752530121
- License:
- Abstract: The discipline of software engineering (SE) combines social and technological dimensions. It is an interdisciplinary research field. However, interdisciplinary research submitted to software engineering venues may not receive the same level of recognition as more traditional or technical topics such as software testing. For this paper, we conducted an online survey of 73 SE researchers and used a mixed-method data analysis approach to investigate their challenges and recommendations when publishing interdisciplinary research in SE. We found that the challenges of publishing interdisciplinary research in SE can be divided into topic-related and reviewing-related challenges. Furthermore, while our initial focus was on publishing interdisciplinary research, the impact of current reviewing practices on marginalized groups emerged from our data, as we found that marginalized groups are more likely to receive negative feedback. In addition, we found that experienced researchers are less likely to change their research direction due to feedback they receive. To address the identified challenges, our participants emphasize the importance of highlighting the impact and value of interdisciplinary work for SE, collaborating with experienced researchers, and establishing clearer submission guidelines and new interdisciplinary SE publication venues. Our findings contribute to the understanding of the current state of the SE research community and how we could better support interdisciplinary research in our field.
Related papers
- Transforming Science with Large Language Models: A Survey on AI-assisted Scientific Discovery, Experimentation, Content Generation, and Evaluation [58.064940977804596]
A plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently.
Ethical concerns regarding shortcomings of these tools and potential for misuse take a particularly prominent place in our discussion.
arXiv Detail & Related papers (2025-02-07T18:26:45Z) - DiscipLink: Unfolding Interdisciplinary Information Seeking Process via Human-AI Co-Exploration [34.23942131024738]
In this paper, we introduce DiscipLink, a novel interactive system that facilitates collaboration between researchers and large language models (LLMs)
Based on users' topics of interest, DiscipLink initiates exploratory questions from the perspectives of possible relevant fields of study.
Our evaluation, comprising a within-subject comparative experiment and an open-ended exploratory study, reveals that DiscipLink can effectively support researchers in breaking down disciplinary boundaries.
arXiv Detail & Related papers (2024-08-01T10:36:00Z) - SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - Towards Generalizing Inferences from Trials to Target Populations [6.836945436656676]
This paper delves into the forefront of addressing external validity challenges, encapsulating a multidisciplinary workshop held at Brown University.
Experts from diverse fields including social science, medicine, public health, statistics, computer science, and education, tackled the unique obstacles each discipline faces in extrapolating experimental findings.
By doing so, this paper aims to enhance the collective understanding of the generalizability and transportability of causal effects.
arXiv Detail & Related papers (2024-02-26T21:49:44Z) - Covidia: COVID-19 Interdisciplinary Academic Knowledge Graph [99.28342534985146]
Existing literature and knowledge platforms on COVID-19 only focus on collecting papers on biology and medicine.
We propose Covidia, COVID-19 interdisciplinary academic knowledge graph to bridge the gap between knowledge of COVID-19 on different domains.
arXiv Detail & Related papers (2023-04-14T16:45:38Z) - How Data Scientists Review the Scholarly Literature [4.406926847270567]
We examine the literature review practices of data scientists.
Data science represents a field seeing an exponential rise in papers.
No prior work has examined the specific practices and challenges faced by these scientists.
arXiv Detail & Related papers (2023-01-10T03:53:05Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AI alignment research is dedicated to ensuring that artificial intelligence (AI) benefits humans.
In this project, we collected and analyzed existing AI alignment research.
We found that the field is growing quickly, with several subfields emerging in parallel.
arXiv Detail & Related papers (2022-06-06T18:24:17Z) - Fairness in Recommender Systems: Research Landscape and Future
Directions [119.67643184567623]
We review the concepts and notions of fairness that were put forward in the area in the recent past.
We present an overview of how research in this field is currently operationalized.
Overall, our analysis of recent works points to certain research gaps.
arXiv Detail & Related papers (2022-05-23T08:34:25Z) - A Search Engine for Scientific Publications: a Cybersecurity Case Study [0.7734726150561086]
This work proposes a new search engine for scientific publications which combines both information retrieval and reading comprehension algorithms.
The proposed solution although being applied to the context of cybersecurity exhibited great generalization capabilities and can be easily adapted to perform under other distinct knowledge domains.
arXiv Detail & Related papers (2021-06-30T20:10:04Z) - Artificial Intelligence for IT Operations (AIOPS) Workshop White Paper [50.25428141435537]
Artificial Intelligence for IT Operations (AIOps) is an emerging interdisciplinary field arising in the intersection between machine learning, big data, streaming analytics, and the management of IT operations.
Main aim of the AIOPS workshop is to bring together researchers from both academia and industry to present their experiences, results, and work in progress in this field.
arXiv Detail & Related papers (2021-01-15T10:43:10Z) - Learnings from Frontier Development Lab and SpaceML -- AI Accelerators
for NASA and ESA [57.06643156253045]
Research with AI and ML technologies lives in a variety of settings with often asynchronous goals and timelines.
We perform a case study of the Frontier Development Lab (FDL), an AI accelerator under a public-private partnership from NASA and ESA.
FDL research follows principled practices that are grounded in responsible development, conduct, and dissemination of AI research.
arXiv Detail & Related papers (2020-11-09T21:23:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.