Boundary-enhanced time series data imputation with long-term dependency diffusion models
- URL: http://arxiv.org/abs/2501.06585v1
- Date: Sat, 11 Jan 2025 16:41:49 GMT
- Title: Boundary-enhanced time series data imputation with long-term dependency diffusion models
- Authors: Chunjing Xiao, Xue Jiang, Xianghe Du, Wei Yang, Wei Lu, Xiaomin Wang, Kevin Chetty,
- Abstract summary: We develop a weight-reducing injection strategy that incorporates the predicted values of missing points with reducing weights into the reverse diffusion process.
We introduce a multi-scale S4-based U-Net, which combines hierarchical information from different levels via multi-resolution integration to capture long-term dependencies.
- Score: 15.029281694501071
- License:
- Abstract: Data imputation is crucial for addressing challenges posed by missing values in multivariate time series data across various fields, such as healthcare, traffic, and economics, and has garnered significant attention. Among various methods, diffusion model-based approaches show notable performance improvements. However, existing methods often cause disharmonious boundaries between missing and known regions and overlook long-range dependencies in missing data estimation, leading to suboptimal results. To address these issues, we propose a Diffusion-based time Series Data Imputation (DSDI) framework. We develop a weight-reducing injection strategy that incorporates the predicted values of missing points with reducing weights into the reverse diffusion process to mitigate boundary inconsistencies. Further, we introduce a multi-scale S4-based U-Net, which combines hierarchical information from different levels via multi-resolution integration to capture long-term dependencies. Experimental results demonstrate that our model outperforms existing imputation methods.
Related papers
- BRATI: Bidirectional Recurrent Attention for Time-Series Imputation [0.14999444543328289]
Missing data in time-series analysis poses significant challenges, affecting the reliability of downstream applications.
This paper introduces BRATI, a novel deep-learning model designed to address multivariate time-series imputation.
BRATI processes temporal dependencies and feature correlations across long and short time horizons, utilizing two imputation blocks that operate in opposite temporal directions.
arXiv Detail & Related papers (2025-01-09T17:50:56Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Revitalizing Multivariate Time Series Forecasting: Learnable Decomposition with Inter-Series Dependencies and Intra-Series Variations Modeling [14.170879566023098]
We introduce a learnable decomposition strategy to capture dynamic trend information more reasonably.
We also propose a dual attention module tailored to capture inter-series dependencies and intra-series variations simultaneously.
arXiv Detail & Related papers (2024-02-20T03:45:59Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Hierarchical Joint Graph Learning and Multivariate Time Series
Forecasting [0.16492989697868887]
We introduce a method of representing multivariate signals as nodes in a graph with edges indicating interdependency between them.
We leverage graph neural networks (GNN) and attention mechanisms to efficiently learn the underlying relationships within the time series data.
The effectiveness of our proposed model is evaluated across various real-world benchmark datasets designed for long-term forecasting tasks.
arXiv Detail & Related papers (2023-11-21T14:24:21Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - CSDI: Conditional Score-based Diffusion Models for Probabilistic Time
Series Imputation [107.63407690972139]
Conditional Score-based Diffusion models for Imputation (CSDI) is a novel time series imputation method that utilizes score-based diffusion models conditioned on observed data.
CSDI improves by 40-70% over existing probabilistic imputation methods on popular performance metrics.
In addition, C reduces the error by 5-20% compared to the state-of-the-art deterministic imputation methods.
arXiv Detail & Related papers (2021-07-07T22:20:24Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.