論文の概要: PGP-SAM: Prototype-Guided Prompt Learning for Efficient Few-Shot Medical Image Segmentation
- arxiv url: http://arxiv.org/abs/2501.06692v1
- Date: Sun, 12 Jan 2025 02:57:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:28:22.120246
- Title: PGP-SAM: Prototype-Guided Prompt Learning for Efficient Few-Shot Medical Image Segmentation
- Title(参考訳): PGP-SAM: 医用画像の高効率分割のためのプロトタイプガイド型プロンプト学習
- Authors: Zhonghao Yan, Zijin Yin, Tianyu Lin, Xiangzhu Zeng, Kongming Liang, Zhanyu Ma,
- Abstract要約: PGP-SAMはプロトタイプベースの数ショットチューニングアプローチで、限られたサンプルを使用して面倒な手作業のプロンプトを置き換える。
私たちのキーとなるアイデアは、クラス固有の知識と関係を捉えるために、クラス内およびクラス内プロトタイプを活用することです。
パブリックな多臓器データセットとプライベートな心室データセットの実験により、PGP-SAMは既存のプロンプトフリーSAMの変種と比較してDiceスコアが優れていることが示された。
- 参考スコア(独自算出の注目度): 16.043307024789062
- License:
- Abstract: The Segment Anything Model (SAM) has demonstrated strong and versatile segmentation capabilities, along with intuitive prompt-based interactions. However, customizing SAM for medical image segmentation requires massive amounts of pixel-level annotations and precise point- or box-based prompt designs. To address these challenges, we introduce PGP-SAM, a novel prototype-based few-shot tuning approach that uses limited samples to replace tedious manual prompts. Our key idea is to leverage inter- and intra-class prototypes to capture class-specific knowledge and relationships. We propose two main components: (1) a plug-and-play contextual modulation module that integrates multi-scale information, and (2) a class-guided cross-attention mechanism that fuses prototypes and features for automatic prompt generation. Experiments on a public multi-organ dataset and a private ventricle dataset demonstrate that PGP-SAM achieves superior mean Dice scores compared with existing prompt-free SAM variants, while using only 10\% of the 2D slices.
- Abstract(参考訳): Segment Anything Model (SAM)は、直感的なプロンプトベースの相互作用とともに、強力で多用途なセグメンテーション機能を示している。
しかし、医療画像のセグメンテーションのためにSAMをカスタマイズするには、大量のピクセルレベルのアノテーションと正確なポイントまたはボックスベースのプロンプト設計が必要である。
これらの課題に対処するため,PGP-SAMという,手作業の面倒なプロンプトを補うために,限られたサンプルを使用する新しいプロトタイプベースのショットチューニング手法を導入する。
私たちのキーとなるアイデアは、クラス固有の知識と関係を捉えるために、クラス内およびクラス内プロトタイプを活用することです。
本稿では,(1)マルチスケール情報を統合するプラグイン・アンド・プレイ・コンテクスト・モジュレーション・モジュール,(2)プロトタイプと機能を融合して自動プロンプト生成を行うクラス誘導型クロスアテンション・メカニズムを提案する。
パブリックな多臓器データセットとプライベートな心室データセットの実験では、PGP-SAMは2Dスライスのうち10倍しか使用せず、既存のプロンプトフリーSAMの亜種に比べてDiceスコアが優れていることが示されている。
関連論文リスト
- Automating MedSAM by Learning Prompts with Weak Few-Shot Supervision [10.609371657347806]
本研究は,入力プロンプトの条件付けを,画像埋め込みから直接プロンプト埋め込みを学習する軽量モジュールに置き換えることを提案する。
本手法は,医療用画像に微調整したSAMのバージョンであるMedSAMを用いて検証した。
論文 参考訳(メタデータ) (2024-09-30T13:53:01Z) - SAM-CP: Marrying SAM with Composable Prompts for Versatile Segmentation [88.80792308991867]
Segment Anything Model (SAM)は、イメージピクセルをパッチにグループ化する機能を示しているが、セグメンテーションにそれを適用することは依然として大きな課題に直面している。
本稿では,SAM-CPを提案する。SAM-CPはSAM以外の2種類の構成可能なプロンプトを確立し,多目的セグメンテーションのために構成する単純な手法である。
実験により、SAM-CPはオープンドメインとクローズドドメインの両方においてセマンティック、例、およびパノプティックセグメンテーションを達成することが示された。
論文 参考訳(メタデータ) (2024-07-23T17:47:25Z) - ASPS: Augmented Segment Anything Model for Polyp Segmentation [77.25557224490075]
SAM(Segment Anything Model)は、ポリープセグメンテーションに先例のないポテンシャルを導入している。
SAMのTransformerベースの構造は、グローバルおよび低周波情報を優先する。
CFAはトレーニング可能なCNNエンコーダブランチと凍結したViTエンコーダを統合し、ドメイン固有の知識の統合を可能にする。
論文 参考訳(メタデータ) (2024-06-30T14:55:32Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM)は、オープンワールドシナリオにおいて、プロンプトのガイダンスによって、その印象的な一般化機能を実証した。
オープンコンテキストにSAMをアライメントするための自動プロンプトのための新しいフレームワークAlignSAMを提案する。
論文 参考訳(メタデータ) (2024-06-01T16:21:39Z) - Unleashing the Potential of SAM for Medical Adaptation via Hierarchical Decoding [15.401507589312702]
本稿では,医療画像の高速微調整のためのSegment Anything Model (SAM) の即時適応であるH-SAMを紹介する。
初期段階では、H-SAMはSAMのオリジナルのデコーダを使用して、より複雑なデコードプロセスの導出として、以前の確率マスクを生成する。
我々のH-SAMは、既存のプロンプトフリーSAMよりも平均Diceが4.78%改善していることを示す。
論文 参考訳(メタデータ) (2024-03-27T05:55:16Z) - Segment Anything Model-guided Collaborative Learning Network for
Scribble-supervised Polyp Segmentation [45.15517909664628]
ポリープのセグメンテーションは、初期におけるポリープの正確な位置決定に重要な役割を担っている。
診断中の医師によるポリープ画像に対するピクセルワイドアノテーションは、時間と費用の両方がかかる。
本稿では,スクリブル制御ポリプセグメンテーションのためのSAM誘導協調学習ネットワーク(SAM-CLNet)を提案する。
論文 参考訳(メタデータ) (2023-12-01T03:07:13Z) - Stable Segment Anything Model [79.9005670886038]
SAM(Segment Anything Model)は、高品質なプロンプトが与えられた場合、顕著に迅速なセグメンテーションを実現する。
本稿では,SAMのセグメンテーション安定性について,多様なプロンプト特性のスペクトルにわたって包括的解析を行った。
1)SAMのセグメンテーション安定性を広範囲に改善し,2)SAMの強力なセグメンテーション効率と一般化を維持した。
論文 参考訳(メタデータ) (2023-11-27T12:51:42Z) - SurgicalSAM: Efficient Class Promptable Surgical Instrument Segmentation [65.52097667738884]
そこで本研究では,SAMの知識と外科的特異的情報を統合し,汎用性を向上させるための,新しいエンドツーエンドの効率的なチューニング手法であるScientialSAMを紹介した。
具体的には,タイピングのための軽量なプロトタイプベースクラスプロンプトエンコーダを提案し,クラスプロトタイプから直接プロンプト埋め込みを生成する。
また,手術器具カテゴリー間のクラス間差異の低さに対応するために,コントラッシブなプロトタイプ学習を提案する。
論文 参考訳(メタデータ) (2023-08-17T02:51:01Z) - Semantic-SAM: Segment and Recognize Anything at Any Granularity [83.64686655044765]
本稿では,任意の粒度でセグメンテーションと認識を可能にする汎用画像セグメンテーションモデルであるSemantic-SAMを紹介する。
複数のデータセットを3つの粒度に集約し、オブジェクトとパーツの分離した分類を導入する。
マルチグラニュラリティ機能を実現するために,各クリックで複数のレベルのマスクを生成できるマルチ選択学習方式を提案する。
論文 参考訳(メタデータ) (2023-07-10T17:59:40Z) - All-in-SAM: from Weak Annotation to Pixel-wise Nuclei Segmentation with
Prompt-based Finetuning [16.016139980843835]
Segment Anything Model (SAM) は、ゼロショットセグメンテーションアプローチにおいて、最近提案されたプロンプトベースのセグメンテーションモデルである。
推論段階で手動のプロンプトを必要とせずに,AI開発ワークフロー全体を通じてSAMを利用するパイプラインを導入する。
実験の結果,1) 提案したパイプラインは, 公開モヌセグデータセット上での核分割タスクにおいて, 最先端(SOTA)手法を超越し, 2) SAMファインタニングのための弱いアノテーションと少ないアノテーションの利用により, 競争性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-07-01T10:12:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。