On the Complexity of Global Necessary Reasons to Explain Classification
- URL: http://arxiv.org/abs/2501.06766v1
- Date: Sun, 12 Jan 2025 10:25:14 GMT
- Title: On the Complexity of Global Necessary Reasons to Explain Classification
- Authors: Marco Calautti, Enrico Malizia, Cristian Molinaro,
- Abstract summary: Explainable AI has garnered considerable attention in recent years, as understanding the reasons behind decisions or predictions made by AI systems is crucial for their successful adoption.<n>In this paper, we focus on global explanations, and explain classification in terms of minimal'' necessary conditions for the classifier to assign a specific class to a generic instance.
- Score: 10.007636884318801
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Explainable AI has garnered considerable attention in recent years, as understanding the reasons behind decisions or predictions made by AI systems is crucial for their successful adoption. Explaining classifiers' behavior is one prominent problem. Work in this area has proposed notions of both local and global explanations, where the former are concerned with explaining a classifier's behavior for a specific instance, while the latter are concerned with explaining the overall classifier's behavior regardless of any specific instance. In this paper, we focus on global explanations, and explain classification in terms of ``minimal'' necessary conditions for the classifier to assign a specific class to a generic instance. We carry out a thorough complexity analysis of the problem for natural minimality criteria and important families of classifiers considered in the literature.
Related papers
- Explainable Evidential Clustering [0.0]
Real-world data often contain imperfections, characterized by uncertainty and imprecision, which are not well handled by traditional methods.<n>Evidential clustering, based on Dempster-Shafer theory, addresses these challenges.<n>We propose the Iterative Evidential Mistake Minimization (IEMM) algorithm, which provides interpretable and cautious decision tree explanations.
arXiv Detail & Related papers (2025-07-16T12:44:25Z) - CohEx: A Generalized Framework for Cohort Explanation [5.269665407562217]
Cohort explanations offer insights into the explainee's behavior on a specific group or cohort of instances.<n>In this paper, we discuss the unique challenges and opportunities associated with measuring cohort explanations.
arXiv Detail & Related papers (2024-10-17T03:36:18Z) - Evaluating Human Alignment and Model Faithfulness of LLM Rationale [66.75309523854476]
We study how well large language models (LLMs) explain their generations through rationales.
We show that prompting-based methods are less "faithful" than attribution-based explanations.
arXiv Detail & Related papers (2024-06-28T20:06:30Z) - Attri-Net: A Globally and Locally Inherently Interpretable Model for Multi-Label Classification Using Class-Specific Counterfactuals [4.384272169863716]
Interpretability is crucial for machine learning algorithms in high-stakes medical applications.
Attri-Net is an inherently interpretable model for multi-label classification that provides local and global explanations.
arXiv Detail & Related papers (2024-06-08T13:52:02Z) - Understanding and Mitigating Classification Errors Through Interpretable
Token Patterns [58.91023283103762]
Characterizing errors in easily interpretable terms gives insight into whether a classifier is prone to making systematic errors.
We propose to discover those patterns of tokens that distinguish correct and erroneous predictions.
We show that our method, Premise, performs well in practice.
arXiv Detail & Related papers (2023-11-18T00:24:26Z) - Interpretability in the Wild: a Circuit for Indirect Object
Identification in GPT-2 small [68.879023473838]
We present an explanation for how GPT-2 small performs a natural language task called indirect object identification (IOI)
To our knowledge, this investigation is the largest end-to-end attempt at reverse-engineering a natural behavior "in the wild" in a language model.
arXiv Detail & Related papers (2022-11-01T17:08:44Z) - Feature Necessity & Relevancy in ML Classifier Explanations [5.232306238197686]
Given a machine learning (ML) model and a prediction, explanations can be defined as sets of features which are sufficient for the prediction.
It is also critical to understand whether sensitive features can occur in some explanation, or whether a non-interesting feature must occur in all explanations.
arXiv Detail & Related papers (2022-10-27T12:12:45Z) - Is Attention Interpretation? A Quantitative Assessment On Sets [0.0]
We study the interpretability of attention in the context of set machine learning.
We find that attention distributions are indeed often reflective of the relative importance of individual instances.
We propose to use ensembling to minimize the risk of misleading attention-based explanations.
arXiv Detail & Related papers (2022-07-26T16:25:38Z) - Effect Identification in Cluster Causal Diagrams [51.42809552422494]
We introduce a new type of graphical model called cluster causal diagrams (for short, C-DAGs)
C-DAGs allow for the partial specification of relationships among variables based on limited prior knowledge.
We develop the foundations and machinery for valid causal inferences over C-DAGs.
arXiv Detail & Related papers (2022-02-22T21:27:31Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
We present an approach that reasons about complex questions by decomposing them to simpler subquestions.
We derive the final answer according to instructions in a predefined reasoning template.
We show that our approach is competitive with the state-of-the-art while being interpretable and requires little supervision.
arXiv Detail & Related papers (2021-04-05T18:56:56Z) - A general approach to compute the relevance of middle-level input
features [0.0]
Middle-level explanations have been introduced for alleviating some deficiencies of low-level explanations.
A general approach to correctly evaluate the elements of middle-level explanations with respect ML model responses has never been proposed in the literature.
arXiv Detail & Related papers (2020-10-16T21:46:50Z) - Evaluations and Methods for Explanation through Robustness Analysis [117.7235152610957]
We establish a novel set of evaluation criteria for such feature based explanations by analysis.
We obtain new explanations that are loosely necessary and sufficient for a prediction.
We extend the explanation to extract the set of features that would move the current prediction to a target class.
arXiv Detail & Related papers (2020-05-31T05:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.