COMPASS: A Compiler Framework for Resource-Constrained Crossbar-Array Based In-Memory Deep Learning Accelerators
- URL: http://arxiv.org/abs/2501.06780v1
- Date: Sun, 12 Jan 2025 11:31:25 GMT
- Title: COMPASS: A Compiler Framework for Resource-Constrained Crossbar-Array Based In-Memory Deep Learning Accelerators
- Authors: Jihoon Park, Jeongin Choe, Dohyun Kim, Jae-Joon Kim,
- Abstract summary: We propose a compiler framework for resource-constrained crossbar-based processing-in-memory (PIM) deep neural network (DNN) accelerators.
We propose an algorithm to determine the optimal partitioning that divides the layers so that each partition can be accelerated on chip.
- Score: 6.172271429579593
- License:
- Abstract: Recently, crossbar array based in-memory accelerators have been gaining interest due to their high throughput and energy efficiency. While software and compiler support for the in-memory accelerators has also been introduced, they are currently limited to the case where all weights are assumed to be on-chip. This limitation becomes apparent with the significantly increasing network sizes compared to the in-memory footprint. Weight replacement schemes are essential to address this issue. We propose COMPASS, a compiler framework for resource-constrained crossbar-based processing-in-memory (PIM) deep neural network (DNN) accelerators. COMPASS is specially targeted for networks that exceed the capacity of PIM crossbar arrays, necessitating access to external memories. We propose an algorithm to determine the optimal partitioning that divides the layers so that each partition can be accelerated on chip. Our scheme takes into account the data dependence between layers, core utilization, and the number of write instructions to minimize latency, memory accesses, and improve energy efficiency. Simulation results demonstrate that COMPASS can accommodate much more networks using a minimal memory footprint, while improving throughput by 1.78X and providing 1.28X savings in energy-delay product (EDP) over baseline partitioning methods.
Related papers
- Fast Matrix Multiplications for Lookup Table-Quantized LLMs [58.11584672945781]
FLUTE is a flexible lookup table engine for LUT-quantized LLMs.
At batch sizes 32 and quantization group size of 128, the FLUTE kernel can be 2-4x faster than existing GEMM kernels.
arXiv Detail & Related papers (2024-07-15T17:55:42Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - A Configurable and Efficient Memory Hierarchy for Neural Network Hardware Accelerator [0.6242215470795112]
We propose a memory hierarchy framework tailored for per layer adaptive memory access patterns of deep neural networks (DNNs)
The objective is to strike an optimized balance between minimizing the required memory capacity and maintaining high accelerator performance.
arXiv Detail & Related papers (2024-04-24T11:57:37Z) - RAMAN: A Re-configurable and Sparse tinyML Accelerator for Inference on
Edge [1.8293684411977293]
Deep Neural Network (DNN) based inference at the edge is challenging as these compute and data-intensive algorithms need to be implemented at low cost and low power.
We present RAMAN, a Re-configurable and spArse tinyML Accelerator for infereNce on edge, architected to exploit the sparsity to reduce area (storage), power as well as latency.
arXiv Detail & Related papers (2023-06-10T17:25:58Z) - Energy-efficient Task Adaptation for NLP Edge Inference Leveraging
Heterogeneous Memory Architectures [68.91874045918112]
adapter-ALBERT is an efficient model optimization for maximal data reuse across different tasks.
We demonstrate the advantage of mapping the model to a heterogeneous on-chip memory architecture by performing simulations on a validated NLP edge accelerator.
arXiv Detail & Related papers (2023-03-25T14:40:59Z) - MCUNetV2: Memory-Efficient Patch-based Inference for Tiny Deep Learning [72.80896338009579]
We find that the memory bottleneck is due to the imbalanced memory distribution in convolutional neural network (CNN) designs.
We propose a generic patch-by-patch inference scheduling, which significantly cuts down the peak memory.
We automate the process with neural architecture search to jointly optimize the neural architecture and inference scheduling, leading to MCUNetV2.
arXiv Detail & Related papers (2021-10-28T17:58:45Z) - Towards Memory-Efficient Neural Networks via Multi-Level in situ
Generation [10.563649948220371]
Deep neural networks (DNN) have shown superior performance in a variety of tasks.
As they rapidly evolve, their escalating computation and memory demands make it challenging to deploy them on resource-constrained edge devices.
We propose a general and unified framework to trade expensive memory transactions with ultra-fast on-chip computations.
arXiv Detail & Related papers (2021-08-25T18:50:24Z) - MAFAT: Memory-Aware Fusing and Tiling of Neural Networks for Accelerated
Edge Inference [1.7894377200944507]
Machine learning networks can easily exceed available memory, increasing latency due to excessive OS swapping.
We propose a memory usage predictor coupled with a search algorithm to provide optimized fusing and tiling configurations.
Results show that our approach can run in less than half the memory, and with a speedup of up to 2.78 under severe memory constraints.
arXiv Detail & Related papers (2021-07-14T19:45:49Z) - SmartDeal: Re-Modeling Deep Network Weights for Efficient Inference and
Training [82.35376405568975]
Deep neural networks (DNNs) come with heavy parameterization, leading to external dynamic random-access memory (DRAM) for storage.
We present SmartDeal (SD), an algorithm framework to trade higher-cost memory storage/access for lower-cost computation.
We show that SD leads to 10.56x and 4.48x reduction in the storage and training energy, with negligible accuracy loss compared to state-of-the-art training baselines.
arXiv Detail & Related papers (2021-01-04T18:54:07Z) - EdgeBERT: Sentence-Level Energy Optimizations for Latency-Aware
Multi-Task NLP Inference [82.1584439276834]
Transformer-based language models such as BERT provide significant accuracy improvement for a multitude of natural language processing (NLP) tasks.
We present EdgeBERT, an in-depth algorithm- hardware co-design for latency-aware energy optimization for multi-task NLP.
arXiv Detail & Related papers (2020-11-28T19:21:47Z) - On the Impact of Partial Sums on Interconnect Bandwidth and Memory
Accesses in a DNN Accelerator [5.429955391775968]
Dedicated accelerators are being designed to address the huge resource requirement of the deep neural network (DNN) applications.
In this paper, we propose a first order analytical method to partition the feature maps for optimal bandwidth.
It is shown that the optimal partitioning and active memory controller can achieve up to 40% bandwidth reduction.
arXiv Detail & Related papers (2020-11-02T09:44:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.