A Universal Framework for Compressing Embeddings in CTR Prediction
- URL: http://arxiv.org/abs/2502.15355v1
- Date: Fri, 21 Feb 2025 10:12:34 GMT
- Title: A Universal Framework for Compressing Embeddings in CTR Prediction
- Authors: Kefan Wang, Hao Wang, Kenan Song, Wei Guo, Kai Cheng, Zhi Li, Yong Liu, Defu Lian, Enhong Chen,
- Abstract summary: We introduce a Model-agnostic Embedding Compression (MEC) framework that compresses embedding tables by quantizing pre-trained embeddings.<n>Our approach consists of two stages: first, we apply popularity-weighted regularization to balance code distribution between high- and low-frequency features.<n> Experiments on three datasets reveal that our method reduces memory usage by over 50x while maintaining or improving recommendation performance.
- Score: 68.27582084015044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate click-through rate (CTR) prediction is vital for online advertising and recommendation systems. Recent deep learning advancements have improved the ability to capture feature interactions and understand user interests. However, optimizing the embedding layer often remains overlooked. Embedding tables, which represent categorical and sequential features, can become excessively large, surpassing GPU memory limits and necessitating storage in CPU memory. This results in high memory consumption and increased latency due to frequent GPU-CPU data transfers. To tackle these challenges, we introduce a Model-agnostic Embedding Compression (MEC) framework that compresses embedding tables by quantizing pre-trained embeddings, without sacrificing recommendation quality. Our approach consists of two stages: first, we apply popularity-weighted regularization to balance code distribution between high- and low-frequency features. Then, we integrate a contrastive learning mechanism to ensure a uniform distribution of quantized codes, enhancing the distinctiveness of embeddings. Experiments on three datasets reveal that our method reduces memory usage by over 50x while maintaining or improving recommendation performance compared to existing models. The implementation code is accessible in our project repository https://github.com/USTC-StarTeam/MEC.
Related papers
- PrefixKV: Adaptive Prefix KV Cache is What Vision Instruction-Following Models Need for Efficient Generation [65.36715026409873]
Key-value (KV) cache, necessitated by the lengthy input and output sequences, notably contributes to the high inference cost.<n>We present PrefixKV, which reframes the challenge of determining KV cache sizes for all layers into the task of searching for the optimal global prefix configuration.<n>Our method achieves the state-of-the-art performance compared with others.
arXiv Detail & Related papers (2024-12-04T15:48:59Z) - LoRC: Low-Rank Compression for LLMs KV Cache with a Progressive Compression Strategy [59.1298692559785]
Key-Value ( KV) cache is crucial component in serving transformer-based autoregressive large language models (LLMs)
Existing approaches to mitigate this issue include: (1) efficient attention variants integrated in upcycling stages; (2) KV cache compression at test time; and (3) KV cache compression at test time.
We propose a low-rank approximation of KV weight matrices, allowing plug-in integration with existing transformer-based LLMs without model retraining.
Our method is designed to function without model tuning in upcycling stages or task-specific profiling in test stages.
arXiv Detail & Related papers (2024-10-04T03:10:53Z) - ThinK: Thinner Key Cache by Query-Driven Pruning [63.13363917871414]
Large Language Models (LLMs) have revolutionized the field of natural language processing, achieving unprecedented performance across a variety of applications.
This paper focuses on the long-context scenario, addressing the inefficiencies in KV cache memory consumption during inference.
We propose ThinK, a novel query-dependent KV cache pruning method designed to minimize attention weight loss while selectively pruning the least significant channels.
arXiv Detail & Related papers (2024-07-30T17:59:08Z) - Unified Low-rank Compression Framework for Click-through Rate Prediction [15.813889566241539]
We propose a unified low-rank decomposition framework for compressing CTR prediction models.
Our framework can achieve better performance than the original model.
Our framework can be applied to embedding tables and layers in various CTR prediction models.
arXiv Detail & Related papers (2024-05-28T13:06:32Z) - CORM: Cache Optimization with Recent Message for Large Language Model Inference [57.109354287786154]
We introduce an innovative method for optimizing the KV cache, which considerably minimizes its memory footprint.
CORM, a KV cache eviction policy, dynamically retains essential key-value pairs for inference without the need for model fine-tuning.
Our validation shows that CORM reduces the inference memory usage of KV cache by up to 70% with negligible performance degradation across six tasks in LongBench.
arXiv Detail & Related papers (2024-04-24T16:11:54Z) - CAFE: Towards Compact, Adaptive, and Fast Embedding for Large-scale Recommendation Models [32.29421689725037]
Existing embedding compression solutions cannot simultaneously meet three key design requirements: memory efficiency, low latency, and adaptability to dynamic data distribution.
Caffe is a Compact, Adaptive, and Fast Embedding compression framework that addresses the above requirements.
Caffe significantly outperforms existing embedding compression methods, yielding 3.92% and 3.68% superior testing AUC on Criteo Kaggle dataset and CriteoTB dataset at a compression ratio of 10000x.
arXiv Detail & Related papers (2023-12-06T03:09:19Z) - Error Feedback Can Accurately Compress Preconditioners [43.60787513716217]
Leveraging second-order information about the loss at the scale of deep networks is one of the main lines of approach for improving the performance of currents for deep learning.
Yet, existing approaches for accurate full-matrix preconditioning, such as Full-Matrix Adagrad (GGT) or Matrix-Free Approximate Curvature (M-FAC) suffer from massive storage costs when applied even to small-scale models.
In this paper, we address this issue via a novel and efficient error-feedback technique that can be applied to compress preconditioners by up to two orders of magnitude in practice, without loss of convergence.
arXiv Detail & Related papers (2023-06-09T17:58:47Z) - Clustering the Sketch: A Novel Approach to Embedding Table Compression [0.0]
Clustered Compositional Embeddings (CCE) combines clustering-based compression like quantization to codebooks with dynamic methods like The Hashing Trick.
CCE achieves the best of both worlds: The high compression rate of codebook-based quantization, but *dynamically* like hashing-based methods, so it can be used during training.
arXiv Detail & Related papers (2022-10-12T07:37:01Z) - Semantically Constrained Memory Allocation (SCMA) for Embedding in
Efficient Recommendation Systems [27.419109620575313]
A key challenge for deep learning models is to work with millions of categorical classes or tokens.
We propose a novel formulation of memory shared embedding, where memory is shared in proportion to the overlap in semantic information.
We demonstrate a significant reduction in the memory footprint while maintaining performance.
arXiv Detail & Related papers (2021-02-24T19:55:49Z) - A Generic Network Compression Framework for Sequential Recommender
Systems [71.81962915192022]
Sequential recommender systems (SRS) have become the key technology in capturing user's dynamic interests and generating high-quality recommendations.
We propose a compressed sequential recommendation framework, termed as CpRec, where two generic model shrinking techniques are employed.
By the extensive ablation studies, we demonstrate that the proposed CpRec can achieve up to 4$sim$8 times compression rates in real-world SRS datasets.
arXiv Detail & Related papers (2020-04-21T08:40:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.