UR2P-Dehaze: Learning a Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior
- URL: http://arxiv.org/abs/2501.06818v1
- Date: Sun, 12 Jan 2025 14:21:05 GMT
- Title: UR2P-Dehaze: Learning a Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior
- Authors: Minglong Xue, Shuaibin Fan, Shivakumara Palaiahnakote, Mingliang Zhou,
- Abstract summary: We propose an unpaired image dehazing network, called the Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior (UR2P-Dehaze)
First, to accurately estimate the illumination, reflectance, and color information of the hazy image, we design a shared prior estimator (SPE) that is iteratively trained to ensure the consistency of illumination and reflectance.
Next, we propose Dynamic Wavelet Separable Convolution (DWSC), which effectively integrates key features across both low and high frequencies.
- Score: 8.713784455593778
- License:
- Abstract: Image dehazing techniques aim to enhance contrast and restore details, which are essential for preserving visual information and improving image processing accuracy. Existing methods rely on a single manual prior, which cannot effectively reveal image details. To overcome this limitation, we propose an unpaired image dehazing network, called the Simple Image Dehaze Enhancer via Unpaired Rich Physical Prior (UR2P-Dehaze). First, to accurately estimate the illumination, reflectance, and color information of the hazy image, we design a shared prior estimator (SPE) that is iteratively trained to ensure the consistency of illumination and reflectance, generating clear, high-quality images. Additionally, a self-monitoring mechanism is introduced to eliminate undesirable features, providing reliable priors for image reconstruction. Next, we propose Dynamic Wavelet Separable Convolution (DWSC), which effectively integrates key features across both low and high frequencies, significantly enhancing the preservation of image details and ensuring global consistency. Finally, to effectively restore the color information of the image, we propose an Adaptive Color Corrector that addresses the problem of unclear colors. The PSNR, SSIM, LPIPS, FID and CIEDE2000 metrics on the benchmark dataset show that our method achieves state-of-the-art performance. It also contributes to the performance improvement of downstream tasks. The project code will be available at https://github.com/Fan-pixel/UR2P-Dehaze. \end{abstract}
Related papers
- UniRestore: Unified Perceptual and Task-Oriented Image Restoration Model Using Diffusion Prior [56.35236964617809]
Image restoration aims to recover content from inputs degraded by various factors, such as adverse weather, blur, and noise.
This paper introduces UniRestore, a unified image restoration model that bridges the gap between PIR and TIR.
We propose a Complementary Feature Restoration Module (CFRM) to reconstruct degraded encoder features and a Task Feature Adapter (TFA) module to facilitate adaptive feature fusion in the decoder.
arXiv Detail & Related papers (2025-01-22T08:06:48Z) - WTCL-Dehaze: Rethinking Real-world Image Dehazing via Wavelet Transform and Contrastive Learning [17.129068060454255]
Single image dehazing is essential for applications such as autonomous driving and surveillance.
We propose an enhanced semi-supervised dehazing network that integrates Contrastive Loss and Discrete Wavelet Transform.
Our proposed algorithm achieves superior performance and improved robustness compared to state-of-the-art single image dehazing methods.
arXiv Detail & Related papers (2024-10-07T05:36:11Z) - FDCE-Net: Underwater Image Enhancement with Embedding Frequency and Dual Color Encoder [49.79611204954311]
Underwater images often suffer from various issues such as low brightness, color shift, blurred details, and noise due to absorption light and scattering caused by water and suspended particles.
Previous underwater image enhancement (UIE) methods have primarily focused on spatial domain enhancement, neglecting the frequency domain information inherent in the images.
arXiv Detail & Related papers (2024-04-27T15:16:34Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior [70.46245698746874]
We present DiffBIR, a general restoration pipeline that could handle different blind image restoration tasks.
DiffBIR decouples blind image restoration problem into two stages: 1) degradation removal: removing image-independent content; 2) information regeneration: generating the lost image content.
In the first stage, we use restoration modules to remove degradations and obtain high-fidelity restored results.
For the second stage, we propose IRControlNet that leverages the generative ability of latent diffusion models to generate realistic details.
arXiv Detail & Related papers (2023-08-29T07:11:52Z) - Division Gets Better: Learning Brightness-Aware and Detail-Sensitive
Representations for Low-Light Image Enhancement [10.899693396348171]
LCDBNet is composed of two branches, namely luminance adjustment network (LAN) and chrominance restoration network (CRN)
LAN takes responsibility for learning brightness-aware features leveraging long-range dependency and local attention correlation.
CRN concentrates on learning detail-sensitive features via multi-level wavelet decomposition.
Finally, a fusion network is designed to blend their learned features to produce visually impressive images.
arXiv Detail & Related papers (2023-07-18T09:52:48Z) - SelfPromer: Self-Prompt Dehazing Transformers with Depth-Consistency [51.92434113232977]
This work presents an effective depth-consistency self-prompt Transformer for image dehazing.
It is motivated by an observation that the estimated depths of an image with haze residuals and its clear counterpart vary.
By incorporating the prompt, prompt embedding, and prompt attention into an encoder-decoder network based on VQGAN, we can achieve better perception quality.
arXiv Detail & Related papers (2023-03-13T11:47:24Z) - Degrade is Upgrade: Learning Degradation for Low-light Image Enhancement [52.49231695707198]
We investigate the intrinsic degradation and relight the low-light image while refining the details and color in two steps.
Inspired by the color image formulation, we first estimate the degradation from low-light inputs to simulate the distortion of environment illumination color, and then refine the content to recover the loss of diffuse illumination color.
Our proposed method has surpassed the SOTA by 0.95dB in PSNR on LOL1000 dataset and 3.18% in mAP on ExDark dataset.
arXiv Detail & Related papers (2021-03-19T04:00:27Z) - Essential Features: Reducing the Attack Surface of Adversarial
Perturbations with Robust Content-Aware Image Preprocessing [5.831840281853604]
Adversaries can fool machine learning models into making incorrect predictions by adding perturbations to an image.
One approach to defending against such perturbations is to apply image preprocessing functions to remove the effects of the perturbation.
We propose a novel image preprocessing technique called Essential Features that transforms the image into a robust feature space.
arXiv Detail & Related papers (2020-12-03T04:40:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.