論文の概要: MEXA-CTP: Mode Experts Cross-Attention for Clinical Trial Outcome Prediction
- arxiv url: http://arxiv.org/abs/2501.06823v1
- Date: Sun, 12 Jan 2025 14:35:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:26:47.715455
- Title: MEXA-CTP: Mode Experts Cross-Attention for Clinical Trial Outcome Prediction
- Title(参考訳): MEXA-CTP: 臨床試験結果予測のためのモードエキスパートのクロスアテンション
- Authors: Yiqing Zhang, Xiaozhong Liu, Fabricio Murai,
- Abstract要約: 我々は、容易に利用可能なマルチモーダルデータを統合し、効果的な表現を生成する軽量アテンションベースモデルMEXA-CTPを提案する。
実験の結果,MEXA-CTPはF1スコアで11.3%,PR-AUCで12.2%,ROC-AUCで2.5%向上した。
- 参考スコア(独自算出の注目度): 14.116060944536011
- License:
- Abstract: Clinical trials are the gold standard for assessing the effectiveness and safety of drugs for treating diseases. Given the vast design space of drug molecules, elevated financial cost, and multi-year timeline of these trials, research on clinical trial outcome prediction has gained immense traction. Accurate predictions must leverage data of diverse modes such as drug molecules, target diseases, and eligibility criteria to infer successes and failures. Previous Deep Learning approaches for this task, such as HINT, often require wet lab data from synthesized molecules and/or rely on prior knowledge to encode interactions as part of the model architecture. To address these limitations, we propose a light-weight attention-based model, MEXA-CTP, to integrate readily-available multi-modal data and generate effective representations via specialized modules dubbed "mode experts", while avoiding human biases in model design. We optimize MEXA-CTP with the Cauchy loss to capture relevant interactions across modes. Our experiments on the Trial Outcome Prediction (TOP) benchmark demonstrate that MEXA-CTP improves upon existing approaches by, respectively, up to 11.3% in F1 score, 12.2% in PR-AUC, and 2.5% in ROC-AUC, compared to HINT. Ablation studies are provided to quantify the effectiveness of each component in our proposed method.
- Abstract(参考訳): 臨床試験は、疾患の治療薬の有効性と安全性を評価するための金の基準である。
薬物分子の膨大な設計空間、財務コストの上昇、およびこれらの臨床試験の複数年のスケジュールを考えると、臨床試験の結果予測に関する研究は大きな注目を集めている。
正確な予測は、成功と失敗を推測するために、薬物分子、標的疾患、および適性基準などの様々なモードのデータを活用する必要がある。
HINTのような従来のディープラーニングアプローチでは、しばしば合成された分子のウェットラボデータを必要としたり、あるいはモデルアーキテクチャの一部として相互作用をエンコードするための事前知識に依存したりする。
これらの制約に対処するため、我々は、容易に利用可能なマルチモーダルデータを統合し、モデル設計における人間のバイアスを回避しつつ、「モードエキスパート」と呼ばれる特殊なモジュールを介して効果的な表現を生成する軽量アテンションベースモデルMEXA-CTPを提案する。
MEXA-CTPをCauchy損失で最適化し、モード間の関連するインタラクションをキャプチャする。
The Trial Outcome Prediction (TOP) ベンチマーク実験により, MEXA-CTP は F1 のスコアが 11.3%,PR-AUC が 12.2%,ROC-AUC が HINT と比較して 2.5% 向上していることが示された。
提案手法における各成分の有効性を定量化するためのアブレーション研究を行った。
関連論文リスト
- TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
本稿では,マルチモーダルデータ(例えば,薬物分子,疾患コード,テキスト,分類・数値的特徴)と臨床治験設計における8つの重要な予測課題をカバーするAIreadyデータセットを精巧にキュレートした。
データセットのユーザビリティと信頼性を確保するため、各タスクに基本的な検証方法を提供する。
このようなオープンアクセスデータセットが利用可能になることは、臨床試験設計のための高度なAIアプローチの開発を促進することを期待する。
論文 参考訳(メタデータ) (2024-06-30T09:13:10Z) - TrialDura: Hierarchical Attention Transformer for Interpretable Clinical Trial Duration Prediction [19.084936647082632]
マルチモーダルデータを用いて臨床試験期間を推定する機械学習に基づくTrialDuraを提案する。
バイオメディカルコンテキストに特化されたBio-BERT埋め込みにエンコードして,より深く,より関連するセマンティック理解を提供する。
提案モデルでは, 平均絶対誤差(MAE)が1.04年, 根平均二乗誤差(RMSE)が1.39年であった。
論文 参考訳(メタデータ) (2024-04-20T02:12:59Z) - CT-ADE: An Evaluation Benchmark for Adverse Drug Event Prediction from Clinical Trial Results [0.10051474951635876]
副作用薬物イベント(ADE)は臨床研究に大きな影響を与え、多くの臨床試験失敗を引き起こした。
この取り組みを支援するために,単薬理治療におけるADEのマルチラベル予測モデルであるCT-ADEを導入する。
CT-ADEは、臨床試験から抽出された168,984種類の薬物とADEのペアを含む2,497種類のユニークな薬物のデータを統合する。
論文 参考訳(メタデータ) (2024-04-19T12:04:32Z) - SECRETS: Subject-Efficient Clinical Randomized Controlled Trials using
Synthetic Intervention [0.0]
クロスオーバー試験は、個人ごとの処理効果を測定することで、サンプルサイズの要求を減らすことができる。
外部データを用いることなく, 患者ごとの個別治療効果(ITE)を推定する新しいフレームワークであるSECRETSを提案する。
この結果から,SECRETSはRCTのパワーを向上しつつ,同等の意義レベルを維持することができることがわかった。
論文 参考訳(メタデータ) (2023-05-08T22:37:16Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
薬物標的親和性(DTA)は、早期の薬物発見において極めて重要である。
湿式実験は依然として最も信頼性の高い方法であるが、時間と資源が集中している。
既存の手法は主に、データ不足の問題に適切に対処することなく、利用可能なDTAデータに基づく技術開発に重点を置いている。
SSM-DTAフレームワークについて述べる。
論文 参考訳(メタデータ) (2022-06-20T14:53:25Z) - Improved Drug-target Interaction Prediction with Intermolecular Graph
Transformer [98.8319016075089]
本稿では,3方向トランスフォーマーアーキテクチャを用いて分子間情報をモデル化する手法を提案する。
分子間グラフ変換器(IGT)は、それぞれ、結合活性と結合ポーズ予測の2番目のベストに対して、最先端のアプローチを9.1%と20.5%で上回っている。
IGTはSARS-CoV-2に対して有望な薬物スクリーニング能力を示す。
論文 参考訳(メタデータ) (2021-10-14T13:28:02Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
臨床試験は、有効性、安全性、または患者採用の問題により、不確実な結果に直面する。
本稿では,より一般的な臨床試験結果予測のための階層型Interaction Network(HINT)を提案する。
論文 参考訳(メタデータ) (2021-02-08T15:09:07Z) - Predicting Clinical Trial Results by Implicit Evidence Integration [40.80948875051806]
新規な臨床試験結果予測(CTRP)タスクを導入する。
CTRPフレームワークでは、モデルがPICO形式の臨床試験の提案を受け、その背景を入力として、その結果を予測する。
PICOを暗黙的に含む医学文献から大規模非構造化文を引用し,その結果を証拠とした。
論文 参考訳(メタデータ) (2020-10-12T12:25:41Z) - Deep Learning for Virtual Screening: Five Reasons to Use ROC Cost
Functions [80.12620331438052]
深層学習は サイリコの何十億もの分子を 迅速にスクリーニングする 重要なツールとなりました
その重要性にもかかわらず、厳密なクラス不均衡、高い決定しきい値、いくつかのデータセットにおける基底真理ラベルの欠如など、これらのモデルのトレーニングにおいて重大な課題が続いている。
このような場合、クラス不均衡に対するロバスト性から、レシーバ動作特性(ROC)を直接最適化することを好んで論じる。
論文 参考訳(メタデータ) (2020-06-25T08:46:37Z) - Learning for Dose Allocation in Adaptive Clinical Trials with Safety
Constraints [84.09488581365484]
新しい化合物の有効性と毒性の関係がより複雑になるにつれて、第1相線量測定試験はますます困難になっている。
最も一般的に使われている方法は、毒性事象のみから学習することで、最大許容量(MTD)を特定することである。
本稿では, 毒性安全性の制約を高い確率で満たしつつ, 累積効果を最大化することを目的とした, 適応型臨床試験手法を提案する。
論文 参考訳(メタデータ) (2020-06-09T03:06:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。