論文の概要: SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training
- arxiv url: http://arxiv.org/abs/2501.06842v1
- Date: Sun, 12 Jan 2025 15:21:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:29:41.721706
- Title: SPAM: Spike-Aware Adam with Momentum Reset for Stable LLM Training
- Title(参考訳): SPAM: 安定LLMトレーニングのためのモメンタムリセット付きスパイク対応アダム
- Authors: Tianjin Huang, Ziquan Zhu, Gaojie Jin, Lu Liu, Zhangyang Wang, Shiwei Liu,
- Abstract要約: 大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示しているが、そのトレーニングは、非常にリソース集約的で、トレーニングの不安定性に影響を受けやすいままである。
本稿では,LLMトレーニング中に観測された勾配スパイクを包括的に調査し,複数のアーキテクチャやデータセットにまたがる傾向を明らかにする。
本稿では,モーメントムリセットを用いたスパイク・アウェア・アダムを提案し,モーメントムリセットとスパイク・アウェア・クリッピングによる勾配スパイク対策について述べる。
- 参考スコア(独自算出の注目度): 60.9776082805359
- License:
- Abstract: Large Language Models (LLMs) have demonstrated exceptional performance across diverse tasks, yet their training remains highly resource-intensive and susceptible to critical challenges such as training instability. A predominant source of this instability stems from gradient and loss spikes, which disrupt the learning process, often leading to costly interventions like checkpoint recovery and experiment restarts, further amplifying inefficiencies. This paper presents a comprehensive investigation into gradient spikes observed during LLM training, revealing their prevalence across multiple architectures and datasets. Our analysis shows that these spikes can be up to $1000\times$ larger than typical gradients, substantially deteriorating model performance. To address this issue, we propose Spike-Aware Adam with Momentum Reset SPAM, a novel optimizer designed to counteract gradient spikes through momentum reset and spike-aware gradient clipping. Extensive experiments, including both pre-training and fine-tuning, demonstrate that SPAM consistently surpasses Adam and its variants across various tasks, including (1) LLM pre-training from 60M to 1B, (2) 4-bit LLM pre-training,(3) reinforcement learning, and (4) Time Series Forecasting. Additionally, SPAM facilitates memory-efficient training by enabling sparse momentum, where only a subset of momentum terms are maintained and updated. When operating under memory constraints, SPAM outperforms state-of-the-art memory-efficient optimizers such as GaLore and Adam-Mini. Our work underscores the importance of mitigating gradient spikes in LLM training and introduces an effective optimization strategy that enhances both training stability and resource efficiency at scale. Code is available at https://github.com/TianjinYellow/SPAM-Optimizer.git
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々なタスクにまたがる例外的なパフォーマンスを示しているが、そのトレーニングは、非常にリソース集約的で、トレーニング不安定のような重要な課題の影響を受けやすいままである。
この不安定性の主な原因は、学習プロセスを阻害する勾配と損失のスパイクであり、多くの場合、チェックポイントの回復や実験の再起動のようなコストのかかる介入につながり、さらに非効率を増幅する。
本稿では,LLMトレーニング中に観測された勾配スパイクを包括的に調査し,複数のアーキテクチャやデータセットにまたがる傾向を明らかにする。
我々の分析によると、これらのスパイクは典型的な勾配よりも最大1000\times$で、モデル性能を著しく劣化させる可能性がある。
この問題を解決するために,運動量リセットとスパイク対応勾配クリッピングによる勾配スパイク対策を目的とした新しい最適化器であるMomentum Reset SPAMを用いたSpike-Aware Adamを提案する。
予備訓練と微調整の両方を含む広範囲な実験により,SPAMは,(1)LLM前訓練を60Mから1Bに,(2)4ビットLLM前訓練を,(3)強化学習を,(4)時系列予測を,Adamとその変種を一貫して上回っていることが示された。
さらにSPAMは、モーメント項のサブセットのみが維持され更新されるスパースモーメントを有効にすることにより、メモリ効率のトレーニングを促進する。
メモリ制約下での操作では、SPAMはGaLoreやAdam-Miniのような最先端のメモリ効率の最適化よりも優れている。
本研究は,LLMトレーニングにおける勾配スパイク低減の重要性を浮き彫りにして,訓練安定性と大規模資源効率を両立させる効果的な最適化戦略を提案する。
コードはhttps://github.com/TianjinYellow/SPAM-Optimizer.gitで入手できる。
関連論文リスト
- A deeper look at depth pruning of LLMs [49.30061112976263]
大規模言語モデル(LLM)は、トレーニングにはリソース集約的だが、本番環境でのデプロイにはよりコストがかかる。
最近の研究は、ブロックの重要性を推定するために、安価なプロキシに基づいてLSMのブロックをプルークしようと試みている。
適応メトリクスはタスク間のパフォーマンスのトレードオフを示すことを示す。
論文 参考訳(メタデータ) (2024-07-23T08:40:27Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Efficient Continual Pre-training by Mitigating the Stability Gap [68.49269649759005]
本研究では,Large Language Models (LLM) の継続事前学習における挙動について検討する。
固定された計算予算内でのLLM性能を向上させるための3つの効果的な戦略を提案する。
当社の戦略は,OpenLlama-3Bモデルの平均医療タスク性能を36.2%から40.7%に改善し,当初のトレーニング予算の40%に過ぎなかった。
論文 参考訳(メタデータ) (2024-06-21T02:28:37Z) - Protecting Privacy Through Approximating Optimal Parameters for Sequence Unlearning in Language Models [37.172662930947446]
言語モデル(LM)は、重大なプライバシーリスクを示す抽出攻撃に対して潜在的に脆弱である。
本稿では,事前学習したLMからターゲットトークンシーケンスを効果的に忘れる新しい未学習手法である,最適パラメータによるプライバシ保護(POP)を提案する。
POPは、9つの分類と4つのダイアログベンチマークにまたがって、保留後の顕著なパフォーマンスを示し、最先端を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2024-06-20T08:12:49Z) - Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs [67.38165028487242]
そこで我々は,DSnoT(Dynamic Sparse No Training, 動的スパース・ノー・トレーニング)を導入した。
動的スパーストレーニングにインスパイアされたDSnoTは、密度とスパースLLM間の再構成誤差を最小限に抑える。
本稿は, LLMのスパースを, 効率的なトレーニング自由な方法で微調整し, 新たな会場をオープンして, LLMの空間性に大きな可能性を拡大する方法について, 新たな知見を提供する。
論文 参考訳(メタデータ) (2023-10-13T07:38:52Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。