Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach
- URL: http://arxiv.org/abs/2501.06878v1
- Date: Sun, 12 Jan 2025 17:24:51 GMT
- Title: Uncertainty-Aware Online Extrinsic Calibration: A Conformal Prediction Approach
- Authors: Mathieu Cocheteux, Julien Moreau, Franck Davoine,
- Abstract summary: We present the first approach to integrate uncertainty awareness into online calibration, combining Monte Carlo Dropout with Conformal Prediction.
We demonstrate effectiveness across different visual sensor types, measuring performance with adapted metrics to evaluate the efficiency and reliability of the intervals.
We offer insights into the reliability of calibration estimates, which can greatly improve the robustness of sensor fusion in dynamic environments.
- Score: 4.683612295430957
- License:
- Abstract: Accurate sensor calibration is crucial for autonomous systems, yet its uncertainty quantification remains underexplored. We present the first approach to integrate uncertainty awareness into online extrinsic calibration, combining Monte Carlo Dropout with Conformal Prediction to generate prediction intervals with a guaranteed level of coverage. Our method proposes a framework to enhance existing calibration models with uncertainty quantification, compatible with various network architectures. Validated on KITTI (RGB Camera-LiDAR) and DSEC (Event Camera-LiDAR) datasets, we demonstrate effectiveness across different visual sensor types, measuring performance with adapted metrics to evaluate the efficiency and reliability of the intervals. By providing calibration parameters with quantifiable confidence measures, we offer insights into the reliability of calibration estimates, which can greatly improve the robustness of sensor fusion in dynamic environments and usefully serve the Computer Vision community.
Related papers
- Consistency Calibration: Improving Uncertainty Calibration via Consistency among Perturbed Neighbors [22.39558434131574]
We introduce the concept of consistency as an alternative perspective on model calibration.
We propose a post-hoc calibration method called Consistency (CC) which adjusts confidence based on the model's consistency across inputs.
We show that performing perturbations at the logit level significantly improves computational efficiency.
arXiv Detail & Related papers (2024-10-16T06:55:02Z) - ReliOcc: Towards Reliable Semantic Occupancy Prediction via Uncertainty Learning [26.369237406972577]
Vision-centric semantic occupancy prediction plays a crucial role in autonomous driving.
There is still few research effort to explore the reliability in predicting semantic occupancy from camera.
We propose ReliOcc, a method designed to enhance the reliability of camera-based occupancy networks.
arXiv Detail & Related papers (2024-09-26T16:33:16Z) - Decoupling of neural network calibration measures [45.70855737027571]
We investigate the coupling of different neural network calibration measures with a special focus on the Area Under Sparsification Error curve (AUSE) metric.
We conclude that the current methodologies leave a degree of freedom, which prevents a unique model for the homologation of safety-critical functionalities.
arXiv Detail & Related papers (2024-06-04T15:21:37Z) - Towards Certification of Uncertainty Calibration under Adversarial Attacks [96.48317453951418]
We show that attacks can significantly harm calibration, and thus propose certified calibration as worst-case bounds on calibration under adversarial perturbations.
We propose novel calibration attacks and demonstrate how they can improve model calibration through textitadversarial calibration training
arXiv Detail & Related papers (2024-05-22T18:52:09Z) - Calibration by Distribution Matching: Trainable Kernel Calibration
Metrics [56.629245030893685]
We introduce kernel-based calibration metrics that unify and generalize popular forms of calibration for both classification and regression.
These metrics admit differentiable sample estimates, making it easy to incorporate a calibration objective into empirical risk minimization.
We provide intuitive mechanisms to tailor calibration metrics to a decision task, and enforce accurate loss estimation and no regret decisions.
arXiv Detail & Related papers (2023-10-31T06:19:40Z) - Two Sides of Miscalibration: Identifying Over and Under-Confidence
Prediction for Network Calibration [1.192436948211501]
Proper confidence calibration of deep neural networks is essential for reliable predictions in safety-critical tasks.
Miscalibration can lead to model over-confidence and/or under-confidence.
We introduce a novel metric, a miscalibration score, to identify the overall and class-wise calibration status.
We use the class-wise miscalibration score as a proxy to design a calibration technique that can tackle both over and under-confidence.
arXiv Detail & Related papers (2023-08-06T17:59:14Z) - Calibration of Neural Networks [77.34726150561087]
This paper presents a survey of confidence calibration problems in the context of neural networks.
We analyze problem statement, calibration definitions, and different approaches to evaluation.
Empirical experiments cover various datasets and models, comparing calibration methods according to different criteria.
arXiv Detail & Related papers (2023-03-19T20:27:51Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Uncertainty-sensitive Activity Recognition: a Reliability Benchmark and
the CARING Models [37.60817779613977]
We present the first study of how welthe confidence values of modern action recognition architectures indeed reflect the probability of the correct outcome.
We introduce a new approach which learns to transform the model output into realistic confidence estimates through an additional calibration network.
arXiv Detail & Related papers (2021-01-02T15:41:21Z) - Unsupervised Calibration under Covariate Shift [92.02278658443166]
We introduce the problem of calibration under domain shift and propose an importance sampling based approach to address it.
We evaluate and discuss the efficacy of our method on both real-world datasets and synthetic datasets.
arXiv Detail & Related papers (2020-06-29T21:50:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.