論文の概要: Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning
- arxiv url: http://arxiv.org/abs/2501.06884v1
- Date: Sun, 12 Jan 2025 17:41:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:26.540351
- Title: Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning
- Title(参考訳): Transforming Vision Transformer: 効率的なマルチタスク非同期学習を目指して
- Authors: Hanwen Zhong, Jiaxin Chen, Yutong Zhang, Di Huang, Yunhong Wang,
- Abstract要約: Vision TransformerのためのMulti-Task Learning (MTL)は、複数のタスクを同時に処理することでモデル能力を向上させることを目的としている。
最近の研究は、Mixture-of-Experts(MoE)構造の設計とローランド適応(LoRA)によるマルチタスク学習の効率化に重点を置いている。
本稿では,事前学習した視覚変換器を効率的なマルチタスク学習器に変換することで,EMTAL(Efficient Multi-Task Learning)と呼ばれる新しい手法を提案する。
- 参考スコア(独自算出の注目度): 59.001091197106085
- License:
- Abstract: Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously. Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning. However, their rigid combination hampers both the optimization of MoE and the ef fectiveness of reparameterization of LoRA, leading to sub-optimal performance and low inference speed. In this work, we propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner during training, and reparameterizing the learned structure for efficient inference. Specifically, we firstly develop the MoEfied LoRA structure, which decomposes the pre-trained Transformer into a low-rank MoE structure and employ LoRA to fine-tune the parameters. Subsequently, we take into account the intrinsic asynchronous nature of multi-task learning and devise a learning Quality Retaining (QR) optimization mechanism, by leveraging the historical high-quality class logits to prevent a well-trained task from performance degradation. Finally, we design a router fading strategy to integrate the learned parameters into the original Transformer, archiving efficient inference. Extensive experiments on public benchmarks demonstrate the superiority of our method, compared to the state-of-the-art multi-task learning approaches.
- Abstract(参考訳): Vision TransformerのためのMulti-Task Learning (MTL)は、複数のタスクを同時に処理することでモデル能力を向上させることを目的としている。
最近の研究は、Mixture-of-Experts(MoE)構造の設計とローランド適応(LoRA)によるマルチタスク学習の効率化に重点を置いている。
しかし、それらの厳密な組み合わせは、MoEの最適化とLoRAの再パラメータ化の有効性の両方をハマーし、準最適性能と低推論速度をもたらす。
本研究では,事前学習した視覚変換器を学習中に効率的なマルチタスク学習器に変換し,学習構造を再パラメータ化することで,EMTAL(Efficient Multi-Task Learning)と呼ばれる新しい手法を提案する。
具体的には、まず、事前学習したトランスフォーマーを低ランクのMoE構造に分解し、LoRAを用いてパラメータを微調整するMoEfied LoRA構造を開発する。
その後、マルチタスク学習の本質的な非同期性を考慮して学習品質保持(QR)最適化機構を考案する。
最後に、学習したパラメータを元のTransformerに統合し、効率的な推論をアーカイブするルータフェーディング戦略を設計する。
公開ベンチマークによる大規模な実験は、最先端のマルチタスク学習手法と比較して、我々の手法の優位性を実証している。
関連論文リスト
- MoDE: Effective Multi-task Parameter Efficient Fine-Tuning with a Mixture of Dyadic Experts [6.245113492272563]
Mixture of Dyadic Experts (MoDE) は効率的なマルチタスク適応のための新しい設計である。
我々の設計はよりきめ細かい混合を可能にし、それによってモデルの複数のタスクを共同で処理する能力を高めます。
論文 参考訳(メタデータ) (2024-08-02T18:05:10Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
大規模言語モデル(LLM)はマルチメディアアプリケーションで複数のタスクを実行する上で大きな可能性を証明している。
MoEは、効率的なタスクデカップリングのためのスパースアーキテクチャによる有望なソリューションとして登場した。
Intuition-MoR1Eは14のパブリックデータセットで優れた効率と2.15%の全体的な精度向上を実現している。
論文 参考訳(メタデータ) (2024-04-13T12:14:58Z) - InterroGate: Learning to Share, Specialize, and Prune Representations
for Multi-task Learning [17.66308231838553]
推論計算効率を最適化しつつ,タスク干渉を緩和する新しいマルチタスク学習(MTL)アーキテクチャを提案する。
学習可能なゲーティング機構を用いて、すべてのタスクのパフォーマンスを保ちながら、共有表現とタスク固有の表現を自動的にバランスさせる。
論文 参考訳(メタデータ) (2024-02-26T18:59:52Z) - Dynamic Transformer Architecture for Continual Learning of Multimodal
Tasks [27.59758964060561]
トランスフォーマーニューラルネットワークは、さまざまなデータモダリティの幅広いアプリケーションにおいて、以前のアーキテクチャを置き換える傾向にある。
連続学習(CL)は、自律学習エージェントに順次到着するタスク間で知識の伝達を容易にすることで、ソリューションとして現れる。
本稿では,視覚と言語の両方に関わる学習タスクに着目したトランスフォーマーベースのCLフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-27T03:03:30Z) - Polyhistor: Parameter-Efficient Multi-Task Adaptation for Dense Vision
Tasks [36.34331439747556]
本稿では,複数のタスクにまたがる情報をトレーニング可能なパラメータで共有するために,PolyhistorとPolyhistor-Liteを提案する。
具体的には、Polyhistorは、トレーニング可能なパラメータの10%しか使用せず、最先端技術と比較して、競争精度を達成している。
論文 参考訳(メタデータ) (2022-10-07T00:25:02Z) - Effective Adaptation in Multi-Task Co-Training for Unified Autonomous
Driving [103.745551954983]
本稿では,3つの下流タスクにおけるMoCoやSimCLRなど,多種多様な自己監督手法の転送性能について検討する。
彼らのパフォーマンスは、サブ最適か、あるいはシングルタスクベースラインよりもはるかに遅れていることに気付きました。
汎用マルチタスクトレーニングのための,単純かつ効果的な事前訓練-適応-ファインチューンパラダイムを提案する。
論文 参考訳(メタデータ) (2022-09-19T12:15:31Z) - UPDeT: Universal Multi-agent Reinforcement Learning via Policy
Decoupling with Transformers [108.92194081987967]
タスクに適合する1つのアーキテクチャを設計し、汎用的なマルチエージェント強化学習パイプラインを最初に試行する。
従来のRNNモデルとは異なり、トランスフォーマーモデルを用いてフレキシブルなポリシーを生成する。
提案方式はUPDeT(Universal Policy Decoupling Transformer)と名付けられ,動作制限を緩和し,マルチエージェントタスクの決定プロセスをより説明しやすいものにする。
論文 参考訳(メタデータ) (2021-01-20T07:24:24Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
マルチタスクモデルを開発する際の2つの一般的な課題は、しばしば文献で見過ごされる。
まず、モデルを本質的に漸進的に可能にし、以前に学んだことを忘れずに新しいタスクから情報を継続的に取り入れる(インクリメンタルラーニング)。
第二に、タスク間の有害な相互作用を排除し、マルチタスク設定(タスク干渉)においてシングルタスクのパフォーマンスを著しく低下させることが示されている。
論文 参考訳(メタデータ) (2020-07-24T14:44:46Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
マルチタスク学習は、複数のタスク間で構造を共有するための有望なアプローチとして登場した。
マルチタスク学習がシングルタスク学習と比較して難しい理由は、完全には理解されていない。
本稿では,他の作業の勾配の正規平面上にタスクの勾配を投影する勾配手術の一形態を提案する。
論文 参考訳(メタデータ) (2020-01-19T06:33:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。