MedGrad E-CLIP: Enhancing Trust and Transparency in AI-Driven Skin Lesion Diagnosis
- URL: http://arxiv.org/abs/2501.06887v1
- Date: Sun, 12 Jan 2025 17:50:47 GMT
- Title: MedGrad E-CLIP: Enhancing Trust and Transparency in AI-Driven Skin Lesion Diagnosis
- Authors: Sadia Kamal, Tim Oates,
- Abstract summary: This study leverages the CLIP (Contrastive Language-Image Pretraining) model, trained on different skin lesion datasets, to capture meaningful relationships between visual features and diagnostic criteria terms.
We propose a method called MedGrad E-CLIP, which builds on gradient-based E-CLIP by incorporating a weighted entropy mechanism designed for complex medical imaging like skin lesions.
By visually explaining how different features in an image relates to diagnostic criteria, this approach demonstrates the potential of advanced vision-language models in medical image analysis.
- Score: 2.9540164442363976
- License:
- Abstract: As deep learning models gain attraction in medical data, ensuring transparent and trustworthy decision-making is essential. In skin cancer diagnosis, while advancements in lesion detection and classification have improved accuracy, the black-box nature of these methods poses challenges in understanding their decision processes, leading to trust issues among physicians. This study leverages the CLIP (Contrastive Language-Image Pretraining) model, trained on different skin lesion datasets, to capture meaningful relationships between visual features and diagnostic criteria terms. To further enhance transparency, we propose a method called MedGrad E-CLIP, which builds on gradient-based E-CLIP by incorporating a weighted entropy mechanism designed for complex medical imaging like skin lesions. This approach highlights critical image regions linked to specific diagnostic descriptions. The developed integrated pipeline not only classifies skin lesions by matching corresponding descriptions but also adds an essential layer of explainability developed especially for medical data. By visually explaining how different features in an image relates to diagnostic criteria, this approach demonstrates the potential of advanced vision-language models in medical image analysis, ultimately improving transparency, robustness, and trust in AI-driven diagnostic systems.
Related papers
- Enhancing Osteoporosis Detection: An Explainable Multi-Modal Learning Framework with Feature Fusion and Variable Clustering [6.196283036344105]
Osteoporosis is a common condition that increases fracture risk, especially in older adults.
This study presents a novel multi-modal learning framework that integrates clinical and imaging data to improve diagnostic accuracy and model interpretability.
arXiv Detail & Related papers (2024-11-01T13:58:15Z) - Enhancing Skin Disease Diagnosis: Interpretable Visual Concept Discovery with SAM [41.398287899966995]
Current AI-assisted skin image diagnosis has achieved dermatologist-level performance in classifying skin cancer.
We propose a novel Cross-Attentive Fusion framework for interpretable skin lesion diagnosis.
arXiv Detail & Related papers (2024-09-14T20:11:25Z) - SkinGEN: an Explainable Dermatology Diagnosis-to-Generation Framework with Interactive Vision-Language Models [54.32264601568605]
SkinGEN is a diagnosis-to-generation framework that generates reference demonstrations from diagnosis results provided by VLM.
We conduct a user study with 32 participants evaluating both the system performance and explainability.
Results demonstrate that SkinGEN significantly improves users' comprehension of VLM predictions and fosters increased trust in the diagnostic process.
arXiv Detail & Related papers (2024-04-23T05:36:33Z) - A Clinical-oriented Multi-level Contrastive Learning Method for Disease Diagnosis in Low-quality Medical Images [4.576524795036682]
Disease diagnosis methods guided by contrastive learning (CL) have shown significant advantages in lesion feature representation.
We propose a clinical-oriented multi-level CL framework that aims to enhance the model's capacity to extract lesion features.
The proposed CL framework is validated on two public medical image datasets, EyeQ and Chest X-ray.
arXiv Detail & Related papers (2024-04-07T09:08:14Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
"Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image (MedAI 2021)" competitions.
We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic.
arXiv Detail & Related papers (2023-07-30T16:08:45Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
We report a Transformer-based representation-learning model as a clinical diagnostic aid that processes multimodal input in a unified manner.
The unified model outperformed an image-only model and non-unified multimodal diagnosis models in the identification of pulmonary diseases.
arXiv Detail & Related papers (2023-06-01T16:23:47Z) - Towards Transparency in Dermatology Image Datasets with Skin Tone
Annotations by Experts, Crowds, and an Algorithm [3.6888633946892044]
Public and private image datasets of dermatological conditions rarely include information on skin color.
As a start towards increasing transparency, AI researchers have appropriated the use of the Fitzpatrick skin type (FST) from a measure of patient photosensitivity to a measure for estimating skin tone.
We show that algorithms based on ITA-FST are not reliable for annotating large-scale image datasets.
arXiv Detail & Related papers (2022-07-06T19:50:39Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Deep Learning Based Decision Support for Medicine -- A Case Study on
Skin Cancer Diagnosis [6.820831423843006]
Clinical application of Deep Learning-based Decision Support Systems for skin cancer screening has the potential to improve the quality of patient care.
This paper provides an overview of works towards explainable, DL-based decision support in medical applications with the example of skin cancer diagnosis from clinical, dermoscopic and histopathologic images.
arXiv Detail & Related papers (2021-03-02T11:07:49Z) - Explaining Clinical Decision Support Systems in Medical Imaging using
Cycle-Consistent Activation Maximization [112.2628296775395]
Clinical decision support using deep neural networks has become a topic of steadily growing interest.
clinicians are often hesitant to adopt the technology because its underlying decision-making process is considered to be intransparent and difficult to comprehend.
We propose a novel decision explanation scheme based on CycleGAN activation which generates high-quality visualizations of classifier decisions even in smaller data sets.
arXiv Detail & Related papers (2020-10-09T14:39:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.