Layer-Wise Security Framework and Analysis for the Quantum Internet
- URL: http://arxiv.org/abs/2501.06989v1
- Date: Mon, 13 Jan 2025 00:44:42 GMT
- Title: Layer-Wise Security Framework and Analysis for the Quantum Internet
- Authors: Zebo Yang, Ali Ghubaish, Raj Jain, Ala Al-Fuqaha, Aiman Erbad, Ramana Kompella, Hassan Shapourian, Reza Nejabati,
- Abstract summary: This study explores the vulnerabilities and the corresponding mitigation strategies across different layers of the quantum internet.
We assess the severity of potential attacks, evaluate the expected effectiveness of mitigation strategies, and identify vulnerabilities within diverse network configurations.
The findings underline the need for ongoing research into the security dimension of the quantum internet to ensure its robustness, encourage its adoption, and maximize its impact on society.
- Score: 4.010252214778243
- License:
- Abstract: With its significant security potential, the quantum internet is poised to revolutionize technologies like cryptography and communications. Although it boasts enhanced security over traditional networks, the quantum internet still encounters unique security challenges essential for safeguarding its Confidentiality, Integrity, and Availability (CIA). This study explores these challenges by analyzing the vulnerabilities and the corresponding mitigation strategies across different layers of the quantum internet, including physical, link, network, and application layers. We assess the severity of potential attacks, evaluate the expected effectiveness of mitigation strategies, and identify vulnerabilities within diverse network configurations, integrating both classical and quantum approaches. Our research highlights the dynamic nature of these security issues and emphasizes the necessity for adaptive security measures. The findings underline the need for ongoing research into the security dimension of the quantum internet to ensure its robustness, encourage its adoption, and maximize its impact on society.
Related papers
- Quantum-driven Zero Trust Framework with Dynamic Anomaly Detection in 7G Technology: A Neural Network Approach [0.0]
We propose the Quantum Neural Network-Enhanced Zero Trust Framework (QNN-ZTF) for enhanced security.
We integrate Zero Trust Architecture, Intrusion Detection Systems, and Quantum Neural Networks (QNNs) for enhanced security.
We show improved cyber threat mitigation, demonstrating the framework's effectiveness in reducing false positives and response times.
arXiv Detail & Related papers (2025-02-11T18:59:32Z) - SoK: Unifying Cybersecurity and Cybersafety of Multimodal Foundation Models with an Information Theory Approach [58.93030774141753]
Multimodal foundation models (MFMs) represent a significant advancement in artificial intelligence.
This paper conceptualizes cybersafety and cybersecurity in the context of multimodal learning.
We present a comprehensive Systematization of Knowledge (SoK) to unify these concepts in MFMs, identifying key threats.
arXiv Detail & Related papers (2024-11-17T23:06:20Z) - Strategic Roadmap for Quantum- Resistant Security: A Framework for Preparing Industries for the Quantum Threat [0.0]
This paper outlines a strategic roadmap for industries to anticipate and mitigate the risks posed by quantum attacks.
By presenting a structured timeline and actionable recommendations, this roadmap with proposed framework prepares industries with the essential strategy to safeguard their potential security threats in the quantum computing era.
arXiv Detail & Related papers (2024-11-15T06:59:41Z) - Towards efficient and secure quantum-classical communication networks [47.27205216718476]
There are two primary approaches to achieving quantum-resistant security: quantum key distribution (QKD) and post-quantum cryptography (PQC)
We introduce the pros and cons of these protocols and explore how they can be combined to achieve a higher level of security and/or improved performance in key distribution.
We hope our discussion inspires further research into the design of hybrid cryptographic protocols for quantum-classical communication networks.
arXiv Detail & Related papers (2024-11-01T23:36:19Z) - Cybersecurity in the Quantum Era: Assessing the Impact of Quantum Computing on Infrastructure [0.04096453902709291]
This analysis explores the impact of quantum computing on critical infrastructure and cloud services.
We advocate for proactive security strategies and collaboration between sectors to develop and implement quantum-resistant cryptography.
This blueprint strengthens each area's defenses against potential quantum-induced cyber threats.
arXiv Detail & Related papers (2024-04-16T15:36:23Z) - Navigating Quantum Security Risks in Networked Environments: A Comprehensive Study of Quantum-Safe Network Protocols [1.7887848708497236]
The emergence of quantum computing poses a formidable security challenge to network protocols.
This paper provides an exhaustive analysis of vulnerabilities introduced by quantum computing in a diverse array of widely utilized security protocols.
arXiv Detail & Related papers (2024-04-12T04:20:05Z) - Evaluation Framework for Quantum Security Risk Assessment: A Comprehensive Strategy for Quantum-Safe Transition [0.03749861135832072]
The rise of large-scale quantum computing poses a significant threat to traditional cryptographic security measures.
Quantum attacks undermine current asymmetric cryptographic algorithms, rendering them ineffective.
This study explores the challenges of migrating to quantum-safe cryptographic states.
arXiv Detail & Related papers (2024-04-12T04:18:58Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - Entanglement-Assisted Quantum Networks: Mechanics, Enabling
Technologies, Challenges, and Research Directions [66.27337498864556]
This paper presents a comprehensive survey of entanglement-assisted quantum networks.
It provides a detailed overview of the network structure, working principles, and development stages.
It also emphasizes open research directions, including architecture design, entanglement-based network issues, and standardization.
arXiv Detail & Related papers (2023-07-24T02:48:22Z) - An Evolutionary Pathway for the Quantum Internet Relying on Secure
Classical Repeaters [64.48099252278821]
We conceive quantum networks using secure classical repeaters combined with the quantum secure direct communication principle.
In these networks, the ciphertext gleaned from a quantum-resistant algorithm is transmitted using QSDC along the nodes.
We have presented the first experimental demonstration of a secure classical repeater based hybrid quantum network.
arXiv Detail & Related papers (2022-02-08T03:24:06Z) - The Computational and Latency Advantage of Quantum Communication
Networks [70.01340727637825]
This article summarises the current status of classical communication networks.
It identifies some critical open research challenges that can only be solved by leveraging quantum technologies.
arXiv Detail & Related papers (2021-06-07T06:31:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.