Multiple-gain Estimation for Running Time of Evolutionary Combinatorial Optimization
- URL: http://arxiv.org/abs/2501.07000v1
- Date: Mon, 13 Jan 2025 01:24:36 GMT
- Title: Multiple-gain Estimation for Running Time of Evolutionary Combinatorial Optimization
- Authors: Min Huang, Pengxiang Chen, Han Huang, Tonli He, Yushan Zhang, Zhifeng Hao,
- Abstract summary: This paper proposes a multiple-gain model to estimate the fitness trend of population during iterations.
The proposed model is an improved version of the average gain model, which is the approach to estimate the running time of evolutionary algorithms for numerical optimization.
- Score: 12.810490884742784
- License:
- Abstract: The running-time analysis of evolutionary combinatorial optimization is a fundamental topic in evolutionary computation. Its current research mainly focuses on specific algorithms for simplified problems due to the challenge posed by fluctuating fitness values. This paper proposes a multiple-gain model to estimate the fitness trend of population during iterations. The proposed model is an improved version of the average gain model, which is the approach to estimate the running time of evolutionary algorithms for numerical optimization. The improvement yields novel results of evolutionary combinatorial optimization, including a briefer proof for the time complexity upper bound in the case of (1+1) EA for the Onemax problem, two tighter time complexity upper bounds than the known results in the case of (1+$\lambda$) EA for the knapsack problem with favorably correlated weights and a closed-form expression of time complexity upper bound in the case of (1+$\lambda$) EA for general $k$-MAX-SAT problems. The results indicate that the practical running time aligns with the theoretical results, verifying that the multiple-gain model is more general for running-time analysis of evolutionary combinatorial optimization than state-of-the-art methods.
Related papers
- Analyzing the Runtime of the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) on the Concatenated Trap Function [2.038038953957366]
GOMEA is an evolutionary algorithm that leverages linkage learning to efficiently exploit problem structure.
We show that GOMEA can solve the problem in $O(m32k)$ with high probability, where $m$ is the number of subfunctions and $k$ is the subfunction length.
This is a significant speedup compared to the (1+1) Evolutionary EA, which requires $O(ln(m)(mk)k)$ expected evaluations.
arXiv Detail & Related papers (2024-07-11T09:37:21Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Time Complexity Analysis of Evolutionary Algorithms for 2-Hop
(1,2)-Minimum Spanning Tree Problem [20.624629608537894]
We consider a constrained version of the 2-Hop (1,2)-Minimum Spanning Tree problem (abbr. MSTP) in the context of evolutionary algorithms, which has been shown to be NP-hard.
Inspired by the special structure of 2-hop spanning trees, we also consider the (1+1) EA with search points in edge-based representation that seems not so natural for the problem and give an upper bound on its expected time to obtain a $frac32$-approximate solution.
arXiv Detail & Related papers (2021-10-10T04:35:02Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
We study optimization of areas under precision-recall curves (AUPRC), which is widely used for imbalanced tasks.
We develop novel momentum methods with a better iteration of $O (1/epsilon4)$ for finding an $epsilon$stationary solution.
We also design a novel family of adaptive methods with the same complexity of $O (1/epsilon4)$, which enjoy faster convergence in practice.
arXiv Detail & Related papers (2021-07-02T16:21:52Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - AdaLead: A simple and robust adaptive greedy search algorithm for
sequence design [55.41644538483948]
We develop an easy-to-directed, scalable, and robust evolutionary greedy algorithm (AdaLead)
AdaLead is a remarkably strong benchmark that out-competes more complex state of the art approaches in a variety of biologically motivated sequence design challenges.
arXiv Detail & Related papers (2020-10-05T16:40:38Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
We prove the $mathcaltilde O(t-1/4)$ rate of convergence for the norm of the gradient of Moreau envelope.
Our analysis works with mini-batch size of $1$, constant first and second order moment parameters, and possibly smooth optimization domains.
arXiv Detail & Related papers (2020-06-11T17:43:19Z) - Analysis of Evolutionary Algorithms on Fitness Function with
Time-linkage Property [27.660240128423176]
In real-world applications, many optimization problems have the time-linkage property, that is, the objective function value relies on the current solution as well as the historical solutions.
This paper takes the first step to rigorously analyze evolutionary algorithms for time-linkage functions.
arXiv Detail & Related papers (2020-04-26T07:56:40Z) - Parameterized Complexity Analysis of Randomized Search Heuristics [16.759797540118665]
This chapter compiles a number of results that apply the theory of parameterized running-time analysis of randomized algorithms.
We outline the main results and proof techniques for a collection of randomized searchs tasked to solve NP-hard optimization problems.
arXiv Detail & Related papers (2020-01-15T03:43:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.