Parameterized Complexity Analysis of Randomized Search Heuristics
- URL: http://arxiv.org/abs/2001.05120v1
- Date: Wed, 15 Jan 2020 03:43:56 GMT
- Title: Parameterized Complexity Analysis of Randomized Search Heuristics
- Authors: Frank Neumann and Andrew M. Sutton
- Abstract summary: This chapter compiles a number of results that apply the theory of parameterized running-time analysis of randomized algorithms.
We outline the main results and proof techniques for a collection of randomized searchs tasked to solve NP-hard optimization problems.
- Score: 16.759797540118665
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This chapter compiles a number of results that apply the theory of
parameterized algorithmics to the running-time analysis of randomized search
heuristics such as evolutionary algorithms. The parameterized approach
articulates the running time of algorithms solving combinatorial problems in
finer detail than traditional approaches from classical complexity theory. We
outline the main results and proof techniques for a collection of randomized
search heuristics tasked to solve NP-hard combinatorial optimization problems
such as finding a minimum vertex cover in a graph, finding a maximum leaf
spanning tree in a graph, and the traveling salesperson problem.
Related papers
- Approximation Algorithms for Combinatorial Optimization with Predictions [3.7235228254732524]
We use predictions to improve over approximation guarantees of classic algorithms.
Our algorithms produce optimal solutions when provided with perfect predictions.
Although we show our approach to be optimal for this class of problems as a whole, there is a potential for exploiting specific structural properties of individual problems to obtain improved bounds.
arXiv Detail & Related papers (2024-11-25T17:31:34Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
This paper studies first-order algorithms for solving fully composite optimization problems convex compact sets.
We leverage the structure of the objective by handling differentiable and non-differentiable separately, linearizing only the smooth parts.
arXiv Detail & Related papers (2023-02-24T18:41:48Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - Optimal Algorithms for Stochastic Complementary Composite Minimization [55.26935605535377]
Inspired by regularization techniques in statistics and machine learning, we study complementary composite minimization.
We provide novel excess risk bounds, both in expectation and with high probability.
Our algorithms are nearly optimal, which we prove via novel lower complexity bounds for this class of problems.
arXiv Detail & Related papers (2022-11-03T12:40:24Z) - Run Time Analysis for Random Local Search on Generalized Majority
Functions [1.0965065178451106]
We study how one of its properties -- neutrality -- influences the run time of random local search.
We provide a theorem, applicable to many optimization algorithms, that links the run time of MAJORITY with its symmetric version HASMAJORITY.
arXiv Detail & Related papers (2022-04-27T08:40:33Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
Motivated by recent increased interest in analysis of optimization algorithms for non- optimization in deep networks and other problems in data, we give an overview of recent results of theoretical optimization algorithms for non- optimization.
arXiv Detail & Related papers (2020-12-11T08:28:51Z) - Exploring search space trees using an adapted version of Monte Carlo
tree search for combinatorial optimization problems [0.6882042556551609]
This approach makes use of a algorithm to explore the search space tree of a problem instance.
The algorithm is based on Monte Carlo tree search, a popular algorithm in game playing that is used to explore game trees.
arXiv Detail & Related papers (2020-10-22T08:33:58Z) - A Heuristic Based on Randomized Greedy Algorithms for the Clustered
Shortest-Path Tree Problem [2.099922236065961]
This paper introduces a new algorithm that combines the major features of RGAs and Shortest Path Tree Algorithm (SPTA) to deal with the Clustered Shortest-Path Tree Problem (CluSPT)
To evaluate the performance of the proposed algorithm, Euclidean benchmarks are selected.
arXiv Detail & Related papers (2020-05-05T08:34:58Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.