Protego: Detecting Adversarial Examples for Vision Transformers via Intrinsic Capabilities
- URL: http://arxiv.org/abs/2501.07044v1
- Date: Mon, 13 Jan 2025 03:54:19 GMT
- Title: Protego: Detecting Adversarial Examples for Vision Transformers via Intrinsic Capabilities
- Authors: Jialin Wu, Kaikai Pan, Yanjiao Chen, Jiangyi Deng, Shengyuan Pang, Wenyuan Xu,
- Abstract summary: Transformer models have excelled in natural language tasks, prompting the vision community to explore their implementation in computer vision problems.
In this paper, we investigate the attack capabilities of six common adversarial attacks on three pretrained ViT models to reveal the vulnerability of ViT models.
To prevent ViT models from adversarial attack, we propose Protego, a detection framework that leverages the transformer intrinsic capabilities to detection adversarial examples.
- Score: 21.96572543062238
- License:
- Abstract: Transformer models have excelled in natural language tasks, prompting the vision community to explore their implementation in computer vision problems. However, these models are still influenced by adversarial examples. In this paper, we investigate the attack capabilities of six common adversarial attacks on three pretrained ViT models to reveal the vulnerability of ViT models. To understand and analyse the bias in neural network decisions when the input is adversarial, we use two visualisation techniques that are attention rollout and grad attention rollout. To prevent ViT models from adversarial attack, we propose Protego, a detection framework that leverages the transformer intrinsic capabilities to detection adversarial examples of ViT models. Nonetheless, this is challenging due to a diversity of attack strategies that may be adopted by adversaries. Inspired by the attention mechanism, we know that the token of prediction contains all the information from the input sample. Additionally, the attention region for adversarial examples differs from that of normal examples. Given these points, we can train a detector that achieves superior performance than existing detection methods to identify adversarial examples. Our experiments have demonstrated the high effectiveness of our detection method. For these six adversarial attack methods, our detector's AUC scores all exceed 0.95. Protego may advance investigations in metaverse security.
Related papers
- ViTGuard: Attention-aware Detection against Adversarial Examples for Vision Transformer [8.71614629110101]
We propose ViTGuard as a general detection method for defending Vision Transformer (ViT) models against adversarial attacks.
ViTGuard uses a Masked Autoencoder (MAE) model to recover randomly masked patches from the unmasked regions.
threshold-based detectors leverage distinctive ViT features, including attention maps and classification (token representations) token representations, to distinguish between normal and adversarial samples.
arXiv Detail & Related papers (2024-09-20T18:11:56Z) - Improving behavior based authentication against adversarial attack using XAI [3.340314613771868]
We propose an eXplainable AI (XAI) based defense strategy against adversarial attacks in such scenarios.
A feature selector, trained with our method, can be used as a filter in front of the original authenticator.
We demonstrate that our XAI based defense strategy is effective against adversarial attacks and outperforms other defense strategies.
arXiv Detail & Related papers (2024-02-26T09:29:05Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - Can Adversarial Examples Be Parsed to Reveal Victim Model Information? [62.814751479749695]
In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information from data-specific adversarial instances.
We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models.
We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks.
arXiv Detail & Related papers (2023-03-13T21:21:49Z) - Inference Time Evidences of Adversarial Attacks for Forensic on
Transformers [27.88746727644074]
Vision Transformers (ViTs) are becoming a popular paradigm for vision tasks as they achieve state-of-the-art performance on image classification.
This paper presents our first attempt toward detecting adversarial attacks during inference time using the network's input and outputs as well as latent features.
arXiv Detail & Related papers (2023-01-31T01:17:03Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Self-Ensembling Vision Transformer (SEViT) for Robust Medical Image
Classification [4.843654097048771]
Vision Transformers (ViT) are competing to replace Convolutional Neural Networks (CNN) for various computer vision tasks in medical imaging.
Recent works have shown that ViTs are also susceptible to such attacks and suffer significant performance degradation under attack.
We propose a novel self-ensembling method to enhance the robustness of ViT in the presence of adversarial attacks.
arXiv Detail & Related papers (2022-08-04T19:02:24Z) - Towards Transferable Adversarial Attacks on Vision Transformers [110.55845478440807]
Vision transformers (ViTs) have demonstrated impressive performance on a series of computer vision tasks, yet they still suffer from adversarial examples.
We introduce a dual attack framework, which contains a Pay No Attention (PNA) attack and a PatchOut attack, to improve the transferability of adversarial samples across different ViTs.
arXiv Detail & Related papers (2021-09-09T11:28:25Z) - Detection Defense Against Adversarial Attacks with Saliency Map [7.736844355705379]
It is well established that neural networks are vulnerable to adversarial examples, which are almost imperceptible on human vision.
Existing defenses are trend to harden the robustness of models against adversarial attacks.
We propose a novel method combined with additional noises and utilize the inconsistency strategy to detect adversarial examples.
arXiv Detail & Related papers (2020-09-06T13:57:17Z) - A Self-supervised Approach for Adversarial Robustness [105.88250594033053]
Adversarial examples can cause catastrophic mistakes in Deep Neural Network (DNNs) based vision systems.
This paper proposes a self-supervised adversarial training mechanism in the input space.
It provides significant robustness against the textbfunseen adversarial attacks.
arXiv Detail & Related papers (2020-06-08T20:42:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.