Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning
- URL: http://arxiv.org/abs/2501.07063v1
- Date: Mon, 13 Jan 2025 05:16:14 GMT
- Title: Research on the Online Update Method for Retrieval-Augmented Generation (RAG) Model with Incremental Learning
- Authors: Yuxin Fan, Yuxiang Wang, Lipeng Liu, Xirui Tang, Na Sun, Zidong Yu,
- Abstract summary: The proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
Experimental results show that the proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
- Score: 13.076087281398813
- License:
- Abstract: In the contemporary context of rapid advancements in information technology and the exponential growth of data volume, language models are confronted with significant challenges in effectively navigating the dynamic and ever-evolving information landscape to update and adapt to novel knowledge in real time. In this work, an online update method is proposed, which is based on the existing Retrieval Enhanced Generation (RAG) model with multiple innovation mechanisms. Firstly, the dynamic memory is used to capture the emerging data samples, and then gradually integrate them into the core model through a tunable knowledge distillation strategy. At the same time, hierarchical indexing and multi-layer gating mechanism are introduced into the retrieval module to ensure that the retrieved content is more targeted and accurate. Finally, a multi-stage network structure is established for different types of inputs in the generation stage, and cross-attention matching and screening are carried out on the intermediate representations of each stage to ensure the effective integration and iterative update of new and old knowledge. Experimental results show that the proposed method is better than the existing mainstream comparison models in terms of knowledge retention and inference accuracy.
Related papers
- Incrementally Learning Multiple Diverse Data Domains via Multi-Source Dynamic Expansion Model [16.035374682124846]
Continual Learning seeks to develop a model capable of incrementally assimilating new information while retaining prior knowledge.
This paper shifts focus to a more complex and realistic learning environment, characterized by data samples sourced from multiple distinct domains.
arXiv Detail & Related papers (2025-01-15T15:49:46Z) - Online Relational Inference for Evolving Multi-agent Interacting Systems [14.275434303742328]
Online Inference (ORI) is designed to efficiently identify hidden interaction graphs in evolving multi-agent interacting systems.
Unlike traditional offline methods that rely on a fixed training set, ORI employs online backpropagation, updating the model with each new data point.
A key innovation is the use of an adjacency matrix as a trainable parameter, optimized through a new adaptive learning technique called AdaRelation.
arXiv Detail & Related papers (2024-11-03T05:43:55Z) - Enhanced Transformer architecture for in-context learning of dynamical systems [0.3749861135832073]
In this paper, we enhance the original meta-modeling framework through three key innovations.
The efficacy of these modifications is demonstrated through a numerical example focusing on the Wiener-Hammerstein system class.
arXiv Detail & Related papers (2024-10-04T10:05:15Z) - Boosting Continual Learning of Vision-Language Models via Mixture-of-Experts Adapters [65.15700861265432]
We present a parameter-efficient continual learning framework to alleviate long-term forgetting in incremental learning with vision-language models.
Our approach involves the dynamic expansion of a pre-trained CLIP model, through the integration of Mixture-of-Experts (MoE) adapters.
To preserve the zero-shot recognition capability of vision-language models, we introduce a Distribution Discriminative Auto-Selector.
arXiv Detail & Related papers (2024-03-18T08:00:23Z) - Diffusion-Based Neural Network Weights Generation [80.89706112736353]
D2NWG is a diffusion-based neural network weights generation technique that efficiently produces high-performing weights for transfer learning.
Our method extends generative hyper-representation learning to recast the latent diffusion paradigm for neural network weights generation.
Our approach is scalable to large architectures such as large language models (LLMs), overcoming the limitations of current parameter generation techniques.
arXiv Detail & Related papers (2024-02-28T08:34:23Z) - Enhanced LFTSformer: A Novel Long-Term Financial Time Series Prediction Model Using Advanced Feature Engineering and the DS Encoder Informer Architecture [0.8532753451809455]
This study presents a groundbreaking model for forecasting long-term financial time series, termed the Enhanced LFTSformer.
The model distinguishes itself through several significant innovations.
Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced LFTSformer outperforms traditional machine learning models.
arXiv Detail & Related papers (2023-10-03T08:37:21Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
In this paper, we present a novel methodology, reframing image retrieval as a variant of generative modeling.
We develop our model, dubbed IRGen, to address the technical challenge of converting an image into a concise sequence of semantic units.
Our model achieves state-of-the-art performance on three widely-used image retrieval benchmarks and two million-scale datasets.
arXiv Detail & Related papers (2023-03-17T17:07:36Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - DST: Dynamic Substitute Training for Data-free Black-box Attack [79.61601742693713]
We propose a novel dynamic substitute training attack method to encourage substitute model to learn better and faster from the target model.
We introduce a task-driven graph-based structure information learning constrain to improve the quality of generated training data.
arXiv Detail & Related papers (2022-04-03T02:29:11Z) - Factorized Deep Generative Models for Trajectory Generation with
Spatiotemporal-Validity Constraints [10.960924101404498]
Deep generative models for trajectory data can learn expressively explanatory models for sophisticated latent patterns.
We first propose novel deep generative models factorizing time-variant and time-invariant latent variables.
We then develop new inference strategies based on variational inference and constrained optimization to thetemporal validity.
arXiv Detail & Related papers (2020-09-20T02:06:36Z) - Automated and Formal Synthesis of Neural Barrier Certificates for
Dynamical Models [70.70479436076238]
We introduce an automated, formal, counterexample-based approach to synthesise Barrier Certificates (BC)
The approach is underpinned by an inductive framework, which manipulates a candidate BC structured as a neural network, and a sound verifier, which either certifies the candidate's validity or generates counter-examples.
The outcomes show that we can synthesise sound BCs up to two orders of magnitude faster, with in particular a stark speedup on the verification engine.
arXiv Detail & Related papers (2020-07-07T07:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.