Intent-Interest Disentanglement and Item-Aware Intent Contrastive Learning for Sequential Recommendation
- URL: http://arxiv.org/abs/2501.07096v1
- Date: Mon, 13 Jan 2025 07:09:01 GMT
- Title: Intent-Interest Disentanglement and Item-Aware Intent Contrastive Learning for Sequential Recommendation
- Authors: Yijin Choi, Chiehyeon Lim,
- Abstract summary: We show how to disentangle user behaviors into intents which are stable tastes of users for a comprehensive understanding of user behaviors.
We also introduce item-aware contrastive learning which aligns intents that occurred the same interaction and aligns intent with item combinations occurred by the corresponding intent.
- Score: 2.8895603929817217
- License:
- Abstract: Recommender systems aim to provide personalized item recommendations by capturing user behaviors derived from their interaction history. Considering that user interactions naturally occur sequentially based on users' intents in mind, user behaviors can be interpreted as user intents. Therefore, intent-based sequential recommendations are actively studied recently to model user intents from historical interactions for a more precise user understanding beyond traditional studies that often overlook the underlying semantics behind user interactions. However, existing studies face three challenges: 1) the limited understanding of user behaviors by focusing solely on intents, 2) the lack of robustness in categorizing intents due to arbitrary fixed numbers of intent categories, and 3) the neglect of interacted items in modeling of user intents. To address these challenges, we propose Intent-Interest Disentanglement and Item-Aware Intent Contrastive Learning for Sequential Recommendation (IDCLRec). IDCLRec disentangles user behaviors into intents which are dynamic motivations and interests which are stable tastes of users for a comprehensive understanding of user behaviors. A causal cross-attention mechanism is used to identify consistent interests across interactions, while residual behaviors are modeled as intents by modeling their temporal dynamics through a similarity adjustment loss. In addition, without predefining the number of intent categories, an importance-weighted attention mechanism captures user-specific categorical intent considering the importance of intent for each interaction. Furthermore, we introduce item-aware contrastive learning which aligns intents that occurred the same interaction and aligns intent with item combinations occurred by the corresponding intent. Extensive experiments conducted on real-world datasets demonstrate the effectiveness of IDCLRec.
Related papers
- Modeling User Intent Beyond Trigger: Incorporating Uncertainty for Trigger-Induced Recommendation [11.699080619946045]
We propose a novel model called Deep Uncertainty Intent Network (DUIN)
DUIN consists of three essential modules: Explicit Intent Exploit Module, Latent Intent Explore Module and Intent Uncertainty Measurement Module.
DUIN has been deployed across all Trigger-Induced Recommendation scenarios in our e-commerce platform.
arXiv Detail & Related papers (2024-08-06T10:45:14Z) - Exploring the Individuality and Collectivity of Intents behind Interactions for Graph Collaborative Filtering [9.740376003100437]
We propose a novel recommendation framework designated as Bilateral Intent-guided Graph Collaborative Filtering (BIGCF)
Specifically, we take a closer look at user-item interactions from a causal perspective and put forth the concepts of individual intent.
To counter the sparsity of implicit feedback, the feature distributions of users and items are encoded via a Gaussian-based graph generation strategy.
arXiv Detail & Related papers (2024-05-15T02:31:26Z) - Contrastive Learning Method for Sequential Recommendation based on Multi-Intention Disentanglement [5.734747179463411]
We propose a Contrastive Learning sequential recommendation method based on Multi-Intention Disentanglement (MIDCL)
In our work, intentions are recognized as dynamic and diverse, and user behaviors are often driven by current multi-intentions.
We propose two types of contrastive learning paradigms for finding the most relevant user's interactive intention, and maximizing the mutual information of positive sample pairs.
arXiv Detail & Related papers (2024-04-28T15:13:36Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Learning Self-Modulating Attention in Continuous Time Space with
Applications to Sequential Recommendation [102.24108167002252]
We propose a novel attention network, named self-modulating attention, that models the complex and non-linearly evolving dynamic user preferences.
We empirically demonstrate the effectiveness of our method on top-N sequential recommendation tasks, and the results on three large-scale real-world datasets show that our model can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-30T03:54:11Z) - Intent Contrastive Learning for Sequential Recommendation [86.54439927038968]
We introduce a latent variable to represent users' intents and learn the distribution function of the latent variable via clustering.
We propose to leverage the learned intents into SR models via contrastive SSL, which maximizes the agreement between a view of sequence and its corresponding intent.
Experiments conducted on four real-world datasets demonstrate the superiority of the proposed learning paradigm.
arXiv Detail & Related papers (2022-02-05T09:24:13Z) - Knowledge-Enhanced Hierarchical Graph Transformer Network for
Multi-Behavior Recommendation [56.12499090935242]
This work proposes a Knowledge-Enhanced Hierarchical Graph Transformer Network (KHGT) to investigate multi-typed interactive patterns between users and items in recommender systems.
KHGT is built upon a graph-structured neural architecture to capture type-specific behavior characteristics.
We show that KHGT consistently outperforms many state-of-the-art recommendation methods across various evaluation settings.
arXiv Detail & Related papers (2021-10-08T09:44:00Z) - Generalized Zero-shot Intent Detection via Commonsense Knowledge [5.398580049917152]
We propose RIDE: an intent detection model that leverages commonsense knowledge in an unsupervised fashion to overcome the issue of training data scarcity.
RIDE computes robust and generalizable relationship meta-features that capture deep semantic relationships between utterances and intent labels.
Our extensive experimental analysis on three widely-used intent detection benchmarks shows that relationship meta-features significantly increase the accuracy of detecting both seen and unseen intents.
arXiv Detail & Related papers (2021-02-04T23:36:41Z) - Multi-Interactive Attention Network for Fine-grained Feature Learning in
CTR Prediction [48.267995749975476]
In the Click-Through Rate (CTR) prediction scenario, user's sequential behaviors are well utilized to capture the user interest.
Existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction.
We propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features.
arXiv Detail & Related papers (2020-12-13T05:46:19Z) - Disentangled Graph Collaborative Filtering [100.26835145396782]
Disentangled Graph Collaborative Filtering (DGCF) is a new model for learning informative representations of users and items from interaction data.
By modeling a distribution over intents for each user-item interaction, we iteratively refine the intent-aware interaction graphs and representations.
DGCF achieves significant improvements over several state-of-the-art models like NGCF, DisenGCN, and MacridVAE.
arXiv Detail & Related papers (2020-07-03T15:37:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.