ListConRanker: A Contrastive Text Reranker with Listwise Encoding
- URL: http://arxiv.org/abs/2501.07111v1
- Date: Mon, 13 Jan 2025 07:51:46 GMT
- Title: ListConRanker: A Contrastive Text Reranker with Listwise Encoding
- Authors: Junlong Liu, Yue Ma, Ruihui Zhao, Junhao Zheng, Qianli Ma, Yangyang Kang,
- Abstract summary: We propose a novel Listwise-encoded Contrastive text reRanker (ListConRanker)
It can help the passage to be compared with other passages during the encoding process.
It achieves state-of-the-art performance on the reranking benchmark of Chinese Massive Text Embedding Benchmark.
- Score: 27.017035527335402
- License:
- Abstract: Reranker models aim to re-rank the passages based on the semantics similarity between the given query and passages, which have recently received more attention due to the wide application of the Retrieval-Augmented Generation. Most previous methods apply pointwise encoding, meaning that it can only encode the context of the query for each passage input into the model. However, for the reranker model, given a query, the comparison results between passages are even more important, which is called listwise encoding. Besides, previous models are trained using the cross-entropy loss function, which leads to issues of unsmooth gradient changes during training and low training efficiency. To address these issues, we propose a novel Listwise-encoded Contrastive text reRanker (ListConRanker). It can help the passage to be compared with other passages during the encoding process, and enhance the contrastive information between positive examples and between positive and negative examples. At the same time, we use the circle loss to train the model to increase the flexibility of gradients and solve the problem of training efficiency. Experimental results show that ListConRanker achieves state-of-the-art performance on the reranking benchmark of Chinese Massive Text Embedding Benchmark, including the cMedQA1.0, cMedQA2.0, MMarcoReranking, and T2Reranking datasets.
Related papers
- Gumbel Reranking: Differentiable End-to-End Reranker Optimization [61.16471123356738]
RAG systems rely on rerankers to identify relevant documents.
fine-tuning these models remains challenging due to the scarcity of annotated query-document pairs.
We propose Gumbel Reranking, an end-to-end training framework for rerankers aimed at minimizing the training-inference gap.
arXiv Detail & Related papers (2025-02-16T13:23:39Z) - Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models [17.420756201557957]
We propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking.
We introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process.
Results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness.
arXiv Detail & Related papers (2024-06-21T03:33:51Z) - SparseCL: Sparse Contrastive Learning for Contradiction Retrieval [87.02936971689817]
Contradiction retrieval refers to identifying and extracting documents that explicitly disagree with or refute the content of a query.
Existing methods such as similarity search and crossencoder models exhibit significant limitations.
We introduce SparseCL that leverages specially trained sentence embeddings designed to preserve subtle, contradictory nuances between sentences.
arXiv Detail & Related papers (2024-06-15T21:57:03Z) - List-aware Reranking-Truncation Joint Model for Search and
Retrieval-augmented Generation [80.12531449946655]
We propose a Reranking-Truncation joint model (GenRT) that can perform the two tasks concurrently.
GenRT integrates reranking and truncation via generative paradigm based on encoder-decoder architecture.
Our method achieves SOTA performance on both reranking and truncation tasks for web search and retrieval-augmented LLMs.
arXiv Detail & Related papers (2024-02-05T06:52:53Z) - Balancing Lexical and Semantic Quality in Abstractive Summarization [0.38073142980733]
We propose a novel training method in which a re-ranker balances the lexical and semantic quality.
Experiments on the CNN/DailyMail and XSum datasets show that our method can estimate the meaning of summaries without seriously degrading the lexical aspect.
arXiv Detail & Related papers (2023-05-17T02:18:31Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) is a highly efficient finetuning method that improves model robustness without requiring index regeneration.
CAPOT enables robust retrieval by freezing the document encoder while the query encoder learns to align noisy queries with their unaltered root.
We evaluate CAPOT noisy variants of MSMARCO, Natural Questions, and Trivia QA passage retrieval, finding CAPOT has a similar impact as data augmentation with none of its overhead.
arXiv Detail & Related papers (2023-04-06T22:16:53Z) - Instance-Level Relative Saliency Ranking with Graph Reasoning [126.09138829920627]
We present a novel unified model to segment salient instances and infer relative saliency rank order.
A novel loss function is also proposed to effectively train the saliency ranking branch.
experimental results demonstrate that our proposed model is more effective than previous methods.
arXiv Detail & Related papers (2021-07-08T13:10:42Z) - Pseudo-Convolutional Policy Gradient for Sequence-to-Sequence
Lip-Reading [96.48553941812366]
Lip-reading aims to infer the speech content from the lip movement sequence.
Traditional learning process of seq2seq models suffers from two problems.
We propose a novel pseudo-convolutional policy gradient (PCPG) based method to address these two problems.
arXiv Detail & Related papers (2020-03-09T09:12:26Z) - Stacked DeBERT: All Attention in Incomplete Data for Text Classification [8.900866276512364]
We propose Stacked DeBERT, short for Stacked Denoising Bidirectional Representations from Transformers.
Our model shows improved F1-scores and better robustness in informal/incorrect texts present in tweets and in texts with Speech-to-Text error in sentiment and intent classification tasks.
arXiv Detail & Related papers (2020-01-01T04:49:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.