Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models
- URL: http://arxiv.org/abs/2406.14848v1
- Date: Fri, 21 Jun 2024 03:33:51 GMT
- Title: Leveraging Passage Embeddings for Efficient Listwise Reranking with Large Language Models
- Authors: Qi Liu, Bo Wang, Nan Wang, Jiaxin Mao,
- Abstract summary: We propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking.
We introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process.
Results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness.
- Score: 17.420756201557957
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Recent studies have demonstrated the effectiveness of using large language language models (LLMs) in passage ranking. The listwise approaches, such as RankGPT, have become new state-of-the-art in this task. However, the efficiency of RankGPT models is limited by the maximum context length and relatively high latency of LLM inference. To address these issues, in this paper, we propose PE-Rank, leveraging the single passage embedding as a good context compression for efficient listwise passage reranking. By treating each passage as a special token, we can directly input passage embeddings into LLMs, thereby reducing input length. Additionally, we introduce an inference method that dynamically constrains the decoding space to these special tokens, accelerating the decoding process. For adapting the model to reranking, we employ listwise learning to rank loss for training. Evaluation results on multiple benchmarks demonstrate that PE-Rank significantly improves efficiency in both prefilling and decoding, while maintaining competitive ranking effectiveness. {The Code is available at \url{https://github.com/liuqi6777/pe_rank}.}
Related papers
- Self-Calibrated Listwise Reranking with Large Language Models [137.6557607279876]
Large language models (LLMs) have been employed in reranking tasks through a sequence-to-sequence approach.
This reranking paradigm requires a sliding window strategy to iteratively handle larger candidate sets.
We propose a novel self-calibrated listwise reranking method, which aims to leverage LLMs to produce global relevance scores for ranking.
arXiv Detail & Related papers (2024-11-07T10:31:31Z) - VeLoRA: Memory Efficient Training using Rank-1 Sub-Token Projections [35.133698935322634]
Large language models (LLMs) have recently emerged as powerful tools for tackling many language-processing tasks.
We identify and characterise the important components needed for effective model convergence using gradient descent.
This result leads us to a cheap and memory-efficient algorithm for both fine-tuning and pre-training LLMs.
arXiv Detail & Related papers (2024-05-28T09:23:14Z) - MoRA: High-Rank Updating for Parameter-Efficient Fine-Tuning [105.11844150736536]
Low-rank adaptation is a popular parameter-efficient fine-tuning method for large language models.
We propose a new method called MoRA, which employs a square matrix to achieve high-rank updating while maintaining the same number of trainable parameters.
Our method outperforms LoRA on memory-intensive tasks and achieves comparable performance on other tasks.
arXiv Detail & Related papers (2024-05-20T15:48:32Z) - Revisiting Unnaturalness for Automated Program Repair in the Era of Large Language Models [9.454475517867817]
We propose a patch-naturalness measurement, entropy-delta, to improve the efficiency of template-based repair techniques.
Our proposed method can rank correct patches more effectively than state-of-the-art machine learning tools.
arXiv Detail & Related papers (2024-04-23T17:12:45Z) - LiPO: Listwise Preference Optimization through Learning-to-Rank [62.02782819559389]
Policy can learn more effectively from a ranked list of plausible responses given the prompt.
We show that LiPO-$lambda$ can outperform DPO variants and SLiC by a clear margin on several preference alignment tasks.
arXiv Detail & Related papers (2024-02-02T20:08:10Z) - PRILoRA: Pruned and Rank-Increasing Low-Rank Adaptation [65.268245109828]
We introduce PRILoRA, which linearly allocates a different rank for each layer, in an increasing manner, and performs pruning throughout the training process.
We validate the effectiveness of PRILoRA through extensive experiments on eight GLUE benchmarks, setting a new state of the art.
arXiv Detail & Related papers (2024-01-20T20:25:17Z) - Instruction Distillation Makes Large Language Models Efficient Zero-shot
Rankers [56.12593882838412]
We introduce a novel instruction distillation method to rank documents.
We first rank documents using the effective pairwise approach with complex instructions, and then distill the teacher predictions to the pointwise approach with simpler instructions.
Our approach surpasses the performance of existing supervised methods like monoT5 and is on par with the state-of-the-art zero-shot methods.
arXiv Detail & Related papers (2023-11-02T19:16:21Z) - A Setwise Approach for Effective and Highly Efficient Zero-shot Ranking with Large Language Models [35.17291316942284]
We propose a novel zero-shot document ranking approach based on Large Language Models (LLMs): the Setwise prompting approach.
Our approach complements existing prompting approaches for LLM-based zero-shot ranking: Pointwise, Pairwise, and Listwise.
arXiv Detail & Related papers (2023-10-14T05:20:02Z) - Efficient Few-Shot Object Detection via Knowledge Inheritance [62.36414544915032]
Few-shot object detection (FSOD) aims at learning a generic detector that can adapt to unseen tasks with scarce training samples.
We present an efficient pretrain-transfer framework (PTF) baseline with no computational increment.
We also propose an adaptive length re-scaling (ALR) strategy to alleviate the vector length inconsistency between the predicted novel weights and the pretrained base weights.
arXiv Detail & Related papers (2022-03-23T06:24:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.