論文の概要: Duplex: Dual Prototype Learning for Compositional Zero-Shot Learning
- arxiv url: http://arxiv.org/abs/2501.07114v1
- Date: Mon, 13 Jan 2025 08:04:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:16.949194
- Title: Duplex: Dual Prototype Learning for Compositional Zero-Shot Learning
- Title(参考訳): Duplex: 合成ゼロショット学習のためのデュアルプロトタイプ学習
- Authors: Zhong Peng, Yishi Xu, Gerong Wang, Wenchao Chen, Bo Chen, Jing Zhang,
- Abstract要約: 合成ゼロショット学習(CZSL)は、学習中に欠落した視覚状態や物体の新たな構成をモデルが認識できるようにすることを目的としている。
そこで我々はDuplexを提案する。Duplexは、セマンティックとビジュアルのプロトタイプを、慎重に設計されたデュアルブランチアーキテクチャを通して統合する新しいデュアルプロトタイプ学習手法である。
- 参考スコア(独自算出の注目度): 17.013498508426398
- License:
- Abstract: Compositional Zero-Shot Learning (CZSL) aims to enable models to recognize novel compositions of visual states and objects that were absent during training. Existing methods predominantly focus on learning semantic representations of seen compositions but often fail to disentangle the independent features of states and objects in images, thereby limiting their ability to generalize to unseen compositions. To address this challenge, we propose Duplex, a novel dual-prototype learning method that integrates semantic and visual prototypes through a carefully designed dual-branch architecture, enabling effective representation learning for compositional tasks. Duplex utilizes a Graph Neural Network (GNN) to adaptively update visual prototypes, capturing complex interactions between states and objects. Additionally, it leverages the strong visual-semantic alignment of pre-trained Vision-Language Models (VLMs) and employs a multi-path architecture combined with prompt engineering to align image and text representations, ensuring robust generalization. Extensive experiments on three benchmark datasets demonstrate that Duplex outperforms state-of-the-art methods in both closed-world and open-world settings.
- Abstract(参考訳): 合成ゼロショット学習(CZSL)は、学習中に欠落した視覚状態や物体の新たな構成をモデルが認識できるようにすることを目的としている。
既存の方法は、主に目に見えない構成のセマンティック表現の学習に焦点をあてるが、多くの場合、画像中の状態やオブジェクトの独立した特徴を解き放つことができず、それによって、目に見えない構成に一般化する能力を制限する。
この課題に対処するため、Duplexを提案する。Duplexは、セマンティックとビジュアルのプロトタイプを、慎重に設計されたデュアルブランチアーキテクチャで統合し、合成タスクの効率的な表現学習を可能にする。
Duplexはグラフニューラルネットワーク(GNN)を使用して視覚プロトタイプを適応的に更新し、状態とオブジェクト間の複雑なインタラクションをキャプチャする。
さらに、事前訓練されたビジョン・ランゲージ・モデル(VLM)の強力なビジュアル・セマンティックアライメントを活用し、画像とテキストの表現を迅速に調整し、堅牢な一般化を保証するために、マルチパスアーキテクチャを利用する。
3つのベンチマークデータセットに対する大規模な実験により、Duplexはクローズドワールドとオープンワールドの両方で最先端のメソッドよりも優れています。
関連論文リスト
- InstructLayout: Instruction-Driven 2D and 3D Layout Synthesis with Semantic Graph Prior [23.536285325566013]
自然言語命令を補完することは、2Dおよび3Dレイアウト合成システムにとって魅力的な特性である。
既存の手法は、オブジェクトの関節分布を暗黙的にモデル化し、オブジェクトの関係を表現し、生成物の可制御性合成システムを妨げる。
Instructは、セマンティックグラフとレイアウトデコーダを統合した、新しい生成フレームワークである。
論文 参考訳(メタデータ) (2024-07-10T12:13:39Z) - Unifying Correspondence, Pose and NeRF for Pose-Free Novel View Synthesis from Stereo Pairs [57.492124844326206]
この研究は、3次元視覚における挑戦的で先駆的な課題であるステレオペアからのポーズレスノベルビュー合成の課題に踏み込んだ。
我々の革新的なフレームワークは、これまでとは違って、シームレスに2D対応マッチング、カメラポーズ推定、NeRFレンダリングを統合し、これらのタスクの相乗的強化を促進します。
論文 参考訳(メタデータ) (2023-12-12T13:22:44Z) - Synchronizing Vision and Language: Bidirectional Token-Masking
AutoEncoder for Referring Image Segmentation [26.262887028563163]
Referring Image (RIS)は、自然言語で表現されたターゲットオブジェクトをピクセルレベルのシーン内でセグメントすることを目的としている。
マスク付きオートエンコーダ(MAE)に触発された新しい双方向トークンマスキングオートエンコーダ(BTMAE)を提案する。
BTMAEは、画像と言語の両方に欠けている機能をトークンレベルで再構築することで、画像から言語、言語へのイメージのコンテキストを学習する。
論文 参考訳(メタデータ) (2023-11-29T07:33:38Z) - ViT-Lens: Towards Omni-modal Representations [64.66508684336614]
ViT-Lens-2は、モダリティ増加の表現学習のためのフレームワークである。
ViT-Lens-2は3Dポイントクラウド,奥行き,オーディオ,触覚,脳波の表現を学習できることを示す。
ViT-Lens-2をシームレスにMultimodal Foundation Modelsに統合することにより、テキストと画像生成へのAny-modalityを可能にする。
論文 参考訳(メタデータ) (2023-11-27T18:52:09Z) - Detecting Any Human-Object Interaction Relationship: Universal HOI
Detector with Spatial Prompt Learning on Foundation Models [55.20626448358655]
本研究では,ビジョン・ランゲージ(VL)基礎モデルと大規模言語モデル(LLM)を用いて,オープンワールド環境におけるユニバーサルインタラクション認識について検討する。
我々の設計にはHO Prompt-guided Decoder (HOPD) が含まれており、基礎モデルにおける高次関係表現と画像内の様々なHOペアとの結合を容易にする。
オープンカテゴリの対話認識では,対話文と解釈文の2つのタイプがサポートされている。
論文 参考訳(メタデータ) (2023-11-07T08:27:32Z) - UniDiff: Advancing Vision-Language Models with Generative and
Discriminative Learning [86.91893533388628]
本稿では、画像テキストコントラスト学習(ITC)、テキスト条件付き画像合成学習(IS)、相互意味整合性モデリング(RSC)を統合した統合マルチモーダルモデルUniDiffを提案する。
UniDiffはマルチモーダル理解と生成タスクの両方において汎用性を示す。
論文 参考訳(メタデータ) (2023-06-01T15:39:38Z) - Troika: Multi-Path Cross-Modal Traction for Compositional Zero-Shot Learning [37.445883075993414]
近年のコンポジションゼロショット学習 (CZSL) 法は, コンポジションオブジェクト対にのみトレーニング可能なプロンプトを構築することで, 事前学習された視覚言語モデル (VLM) に適応している。
CZSLモデルのための新しいパラダイムを提案し、状態、対象、構成を協調的にモデル化する3つの識別分岐(Multi-Path)を確立する。
提案手法は,クローズドワールドとオープンワールドの両設定において,既存の手法を著しく上回っている。
論文 参考訳(メタデータ) (2023-03-27T14:10:26Z) - Decomposed Soft Prompt Guided Fusion Enhancing for Compositional
Zero-Shot Learning [15.406125901927004]
本稿では、視覚言語モデル(VLM)を組み込んで、不明瞭な合成認識を実現することによって、DFSP(Decomposed Fusion with Soft Prompt)1という新しいフレームワークを提案する。
具体的には、DFSPは学習可能なソフトプロンプトと状態とオブジェクトのベクトル結合を構築し、それらの結合表現を確立する。
さらに、言語とイメージブランチの間にクロスモーダル融合モジュールが設計されており、画像の特徴ではなく、言語機能間で状態とオブジェクトを分解する。
論文 参考訳(メタデータ) (2022-11-19T12:29:12Z) - Part-aware Prototypical Graph Network for One-shot Skeleton-based Action
Recognition [57.86960990337986]
ワンショットスケルトンに基づくアクション認識は、ベースクラスから新しいクラスへの変換可能な表現を学習する上で、ユニークな課題となる。
単発骨格に基づく行動認識のためのパートアウェアなプロトタイプ表現を提案する。
本手法の有効性を2つの公開骨格に基づく行動認識データセットに示す。
論文 参考訳(メタデータ) (2022-08-19T04:54:56Z) - Cross-modal Representation Learning for Zero-shot Action Recognition [67.57406812235767]
我々は、ゼロショット動作認識(ZSAR)のためのビデオデータとテキストラベルを共同で符号化するクロスモーダルトランスフォーマーベースのフレームワークを提案する。
我々のモデルは概念的に新しいパイプラインを使用し、視覚的表現と視覚的意味的関連をエンドツーエンドで学習する。
実験結果から,本モデルはZSARの芸術的状況に大きく改善され,UCF101,HMDB51,ActivityNetベンチマークデータセット上でトップ1の精度が向上した。
論文 参考訳(メタデータ) (2022-05-03T17:39:27Z) - Bowtie Networks: Generative Modeling for Joint Few-Shot Recognition and
Novel-View Synthesis [39.53519330457627]
本稿では,複数ショット認識と新規ビュー合成という新たな課題を提案する。
我々は、オブジェクト分類器を同時に学習し、新しい視点からそのタイプのオブジェクトの画像を生成することを目的としている。
生成モデルと識別モデルとの相互作用と協調に焦点を当てる。
論文 参考訳(メタデータ) (2020-08-16T19:40:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。