Decentralized Smoothing ADMM for Quantile Regression with Non-Convex Sparse Penalties
- URL: http://arxiv.org/abs/2408.01307v2
- Date: Thu, 8 Aug 2024 19:16:35 GMT
- Title: Decentralized Smoothing ADMM for Quantile Regression with Non-Convex Sparse Penalties
- Authors: Reza Mirzaeifard, Diyako Ghaderyan, Stefan Werner,
- Abstract summary: In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors.
Addressing the limitations of existing methods, such as the sub-gradient consensus approach, which fails to distinguish between active and non-active coefficients.
- Score: 3.269165283595478
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the rapidly evolving internet-of-things (IoT) ecosystem, effective data analysis techniques are crucial for handling distributed data generated by sensors. Addressing the limitations of existing methods, such as the sub-gradient approach, which fails to distinguish between active and non-active coefficients effectively, this paper introduces the decentralized smoothing alternating direction method of multipliers (DSAD) for penalized quantile regression. Our method leverages non-convex sparse penalties like the minimax concave penalty (MCP) and smoothly clipped absolute deviation (SCAD), improving the identification and retention of significant predictors. DSAD incorporates a total variation norm within a smoothing ADMM framework, achieving consensus among distributed nodes and ensuring uniform model performance across disparate data sources. This approach overcomes traditional convergence challenges associated with non-convex penalties in decentralized settings. We present theoretical proofs and extensive simulation results to validate the effectiveness of the DSAD, demonstrating its superiority in achieving reliable convergence and enhancing estimation accuracy compared with prior methods.
Related papers
- Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - Federated Smoothing Proximal Gradient for Quantile Regression with Non-Convex Penalties [3.269165283595478]
Distributed sensors in the internet-of-things (IoT) generate vast amounts of sparse data.
We propose a federated smoothing proximal gradient (G) algorithm that integrates a smoothing mechanism with the view, thereby both precision and computational speed.
arXiv Detail & Related papers (2024-08-10T21:50:19Z) - Decentralized Stochastic Subgradient Methods for Nonsmooth Nonconvex Optimization [10.278310909980576]
We propose a framework for unified decentralized subgradient training to neural networks.
We show that our proposed framework guarantees the inclusion of neural networks in the training time.
arXiv Detail & Related papers (2024-03-18T08:35:17Z) - AlberDICE: Addressing Out-Of-Distribution Joint Actions in Offline
Multi-Agent RL via Alternating Stationary Distribution Correction Estimation [65.4532392602682]
One of the main challenges in offline Reinforcement Learning (RL) is the distribution shift that arises from the learned policy deviating from the data collection policy.
This is often addressed by avoiding out-of-distribution (OOD) actions during policy improvement as their presence can lead to substantial performance degradation.
We introduce AlberDICE, an offline MARL algorithm that performs centralized training of individual agents based on stationary distribution optimization.
arXiv Detail & Related papers (2023-11-03T18:56:48Z) - FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental
Regularization [5.182014186927254]
Federated Learning (FL) has been successfully adopted for distributed training and inference of large-scale Deep Neural Networks (DNNs)
We contribute with a novel FL framework (coined FedDIP) which combines (i) dynamic model pruning with error feedback to eliminate redundant information exchange.
We provide convergence analysis of FedDIP and report on a comprehensive performance and comparative assessment against state-of-the-art methods.
arXiv Detail & Related papers (2023-09-13T08:51:19Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - A Unified Momentum-based Paradigm of Decentralized SGD for Non-Convex
Models and Heterogeneous Data [0.261072980439312]
We propose a unified paradigm called U.MP, D-MP and GT-D, which provides a convergence guarantee for non general objectives.
In theory we provide the convergence analysis objectives two approaches for these non-MP algorithms.
arXiv Detail & Related papers (2023-03-01T02:13:22Z) - Distributed Semi-supervised Fuzzy Regression with Interpolation
Consistency Regularization [38.16335448831723]
We propose a distributed semi-supervised fuzzy regression (DSFR) model with fuzzy if-then rules and consistency regularization (ICR)
Experiments results on both artificial and real-world datasets show that the proposed DSFR model can achieve much better performance than the state-of-the-art DSSL algorithm.
arXiv Detail & Related papers (2022-09-18T04:46:51Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.