論文の概要: FaceOracle: Chat with a Face Image Oracle
- arxiv url: http://arxiv.org/abs/2501.07202v1
- Date: Mon, 13 Jan 2025 10:53:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:13.786943
- Title: FaceOracle: Chat with a Face Image Oracle
- Title(参考訳): FaceOracle: Face Image Oracleとのチャット
- Authors: Wassim Kabbani, Kiran Raja, Raghavendra Ramachandra, Christoph Busch,
- Abstract要約: 我々は、AIアシスタントであるFaceOracleを紹介した。これは、ユーザーが標準準拠のアルゴリズムを使用して自然な会話で顔画像を分析するのを助ける。
私たちは、発行機関の専門家がFaceOracleを彼らのワークフローに組み込む方法を示す概念実証を実装しています。
- 参考スコア(独自算出の注目度): 6.765680388573267
- License:
- Abstract: A face image is a mandatory part of ID and travel documents. Obtaining high-quality face images when issuing such documents is crucial for both human examiners and automated face recognition systems. In several international standards, face image quality requirements are intricate and defined in detail. Identifying and understanding non-compliance or defects in the submitted face images is crucial for both issuing authorities and applicants. In this work, we introduce FaceOracle, an LLM-powered AI assistant that helps its users analyze a face image in a natural conversational manner using standard compliant algorithms. Leveraging the power of LLMs, users can get explanations of various face image quality concepts as well as interpret the outcome of face image quality assessment (FIQA) algorithms. We implement a proof-of-concept that demonstrates how experts at an issuing authority could integrate FaceOracle into their workflow to analyze, understand, and communicate their decisions more efficiently, resulting in enhanced productivity.
- Abstract(参考訳): 顔画像は、IDおよび旅行文書の必須部分である。
このような文書を発行する際の高品質な顔画像の取得は、人間検査官と自動顔認証システムの両方にとって不可欠である。
いくつかの国際標準では、顔画像の品質要件は複雑で詳細に定義されている。
提出された顔画像の非コンプライアンスや欠陥の特定と理解は、当局と申請者の両方に不可欠である。
本研究では,LLMを利用したAIアシスタントであるFaceOracleを紹介する。
LLMのパワーを活用して、ユーザーは様々な顔画像品質概念の説明と、顔画像品質評価(FIQA)アルゴリズムの結果を解釈することができる。
私たちは、発行機関の専門家がFaceOracleをワークフローに統合して、意思決定をより効率的に分析し、理解し、伝達し、生産性を高める方法を示す概念実証を実装しています。
関連論文リスト
- OSDFace: One-Step Diffusion Model for Face Restoration [72.5045389847792]
拡散モデルは、顔の修復において顕著な性能を示した。
顔復元のための新しいワンステップ拡散モデルOSDFaceを提案する。
その結果,OSDFaceは現状のSOTA(State-of-the-art)手法を視覚的品質と定量的指標の両方で上回っていることがわかった。
論文 参考訳(メタデータ) (2024-11-26T07:07:48Z) - Rank-based No-reference Quality Assessment for Face Swapping [88.53827937914038]
顔スワップ法における品質測定の基準は、操作された画像とソース画像の間のいくつかの距離に依存する。
顔スワップ用に設計された新しい非参照画像品質評価法(NR-IQA)を提案する。
論文 参考訳(メタデータ) (2024-06-04T01:36:29Z) - Explaining Deep Face Algorithms through Visualization: A Survey [57.60696799018538]
本研究は、顔領域における説明可能性アルゴリズムの第一種メタ分析を行う。
既存のフェース説明可能性について概観し、フェースネットワークの構造と階層に関する貴重な知見を明らかにする。
論文 参考訳(メタデータ) (2023-09-26T07:16:39Z) - FACE-AUDITOR: Data Auditing in Facial Recognition Systems [24.082527732931677]
顔画像を扱うスケーラビリティと能力のために、ショットベースの顔認識システムが注目されている。
顔画像の誤使用を防止するために、簡単なアプローチとして、生の顔画像を共有する前に修正する方法がある。
そこで本研究では,FACE-AUDITORの完全ツールキットを提案する。このツールキットは,少数ショットベースの顔認識モデルに問い合わせ,ユーザの顔画像のいずれかがモデルのトレーニングに使用されているかどうかを判断する。
論文 参考訳(メタデータ) (2023-04-05T23:03:54Z) - A Comparative Analysis of the Face Recognition Methods in Video
Surveillance Scenarios [0.0]
本研究では,最先端の顔認識手法に対する比較ベンチマーク表を提案する。
本研究では, 年齢差, クラス内差(顔のメイクアップ, ひげなど)のある顔IDの映像監視データセットを構築し, ネイティブな顔画像データを用いて評価を行った。
一方、この研究は、マスクのない顔、マスクされた顔、眼鏡をかけた顔など、さまざまな状況下で最高の認識方法を発見する。
論文 参考訳(メタデータ) (2022-11-05T17:59:18Z) - A Deep Insight into Measuring Face Image Utility with General and
Face-specific Image Quality Metrics [5.770286315818393]
一般的な画像品質のメトリクスは、グローバルなイメージで使用することができ、人間の知覚に関連付けられる。
本研究の結果から,顔用ユーティリティ尺度として特に訓練を受けなくても,学習した画像指標と顔用ユーティリティとの間に明確な相関関係が明らかとなった。
論文 参考訳(メタデータ) (2021-10-21T12:56:38Z) - Pixel-Level Face Image Quality Assessment for Explainable Face
Recognition [5.858033242850427]
認識のための顔画像における画素の有効性を決定する画素レベルの顔画像品質の概念を導入する。
本研究では,任意の顔認識ネットワークが与えられた場合,顔画像の画素レベルの品質を評価するためのトレーニング不要なアプローチを提案する。
論文 参考訳(メタデータ) (2021-10-21T09:12:17Z) - SynFace: Face Recognition with Synthetic Data [83.15838126703719]
我々は、ID混在(IM)とドメイン混在(DM)を併用したSynFaceを考案し、パフォーマンスギャップを緩和する。
また、合成顔画像の系統的実験分析を行い、合成データを顔認識に効果的に活用する方法についての知見を提供する。
論文 参考訳(メタデータ) (2021-08-18T03:41:54Z) - Network Architecture Search for Face Enhancement [82.25775020564654]
我々は、NASFE(Network Architecture Search for Face Enhancement)と呼ばれるマルチタスクの顔復元ネットワークを提案する。
NASFEは、単一の劣化(すなわち)を含む低品質の顔画像を高めることができる。
ノイズまたはぼやけ)または複数の劣化(ノイズ+ブラル+ローライト)
論文 参考訳(メタデータ) (2021-05-13T19:46:05Z) - Joint Face Image Restoration and Frontalization for Recognition [79.78729632975744]
現実世界のシナリオでは、大きなポーズ、悪い照明、低解像度、ぼやけ、ノイズなど、多くの要因が顔認識性能を損なう可能性がある。
それまでの努力は通常、まず品質の低い顔から高品質な顔に復元し、次に顔認識を行う。
与えられた低品質の顔からフロンダル化された高品質の顔を復元する多段階顔復元モデルを提案する。
論文 参考訳(メタデータ) (2021-05-12T03:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。