論文の概要: Toward Realistic Camouflaged Object Detection: Benchmarks and Method
- arxiv url: http://arxiv.org/abs/2501.07297v1
- Date: Mon, 13 Jan 2025 13:04:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:10.003126
- Title: Toward Realistic Camouflaged Object Detection: Benchmarks and Method
- Title(参考訳): 実写カモフラージュ物体検出に向けて:ベンチマークと方法
- Authors: Zhimeng Xin, Tianxu Wu, Shiming Chen, Shuo Ye, Zijing Xie, Yixiong Zou, Xinge You, Yufei Guo,
- Abstract要約: カモフラージュされたオブジェクト検出(COD)は、主にセマンティックまたはインスタンスセグメンテーション手法に依存している。
カモフラージュ検出のためのCAFR(camouflage-aware feature refinement)戦略を提案する。
CAFRは、大型モデルの以前の知識の中で、現在の物体の明確な認識を十分に利用し、背景と前景の区別を深く理解する検出器を支援する。
- 参考スコア(独自算出の注目度): 11.279532701331647
- License:
- Abstract: Camouflaged object detection (COD) primarily relies on semantic or instance segmentation methods. While these methods have made significant advancements in identifying the contours of camouflaged objects, they may be inefficient or cost-effective for tasks that only require the specific location of the object. Object detection algorithms offer an optimized solution for Realistic Camouflaged Object Detection (RCOD) in such cases. However, detecting camouflaged objects remains a formidable challenge due to the high degree of similarity between the features of the objects and their backgrounds. Unlike segmentation methods that perform pixel-wise comparisons to differentiate between foreground and background, object detectors omit this analysis, further aggravating the challenge. To solve this problem, we propose a camouflage-aware feature refinement (CAFR) strategy. Since camouflaged objects are not rare categories, CAFR fully utilizes a clear perception of the current object within the prior knowledge of large models to assist detectors in deeply understanding the distinctions between background and foreground. Specifically, in CAFR, we introduce the Adaptive Gradient Propagation (AGP) module that fine-tunes all feature extractor layers in large detection models to fully refine class-specific features from camouflaged contexts. We then design the Sparse Feature Refinement (SFR) module that optimizes the transformer-based feature extractor to focus primarily on capturing class-specific features in camouflaged scenarios. To facilitate the assessment of RCOD tasks, we manually annotate the labels required for detection on three existing segmentation COD datasets, creating a new benchmark for RCOD tasks. Code and datasets are available at: https://github.com/zhimengXin/RCOD.
- Abstract(参考訳): カモフラージュされたオブジェクト検出(COD)は、主にセマンティックまたはインスタンスセグメンテーション手法に依存している。
これらの手法は、カモフラージュされた物体の輪郭を識別する上で大きな進歩を遂げてきたが、物体の特定の位置のみを必要とするタスクに対して、効率が悪く、あるいは費用対効果が低い可能性がある。
オブジェクト検出アルゴリズムは、そのような場合、Realistic Camouflaged Object Detection (RCOD) のための最適化されたソリューションを提供する。
しかし, 物体の特徴と背景の類似性が高いため, カモフラージュされた物体の検出は依然として困難な課題である。
前景と背景を区別するためにピクセル単位で比較を行うセグメンテーション法とは異なり、物体検出器はこの分析を省略し、さらなる課題を拡大した。
そこで本研究では,カモフラージュ認識機能改善(CAFR)戦略を提案する。
カモフラージュされた物体はまれなカテゴリーではないため、CAFRは大型モデルの以前の知識の中で現在の物体の明瞭な認識を十分に利用し、背景と前景の区別を深く理解するために検出器を補助する。
特にCAFRでは,すべての特徴抽出層を大きな検出モデルに微調整し,キャモフラージュしたコンテキストからクラス固有の特徴を完全に洗練するAdaptive Gradient Propagation (AGP) モジュールを導入している。
次にSFR(Sparse Feature Refinement)モジュールを設計し、トランスフォーマーベースの特徴抽出器を最適化し、主にキャモフラージュシナリオにおけるクラス固有の特徴のキャプチャにフォーカスする。
RCODタスクの評価を容易にするため,既存の3つのセグメンテーションCODデータセットの検出に必要なラベルを手動でアノテートし,RCODタスクの新しいベンチマークを作成する。
コードとデータセットは、https://github.com/zhimengXin/RCOD.comで入手できる。
関連論文リスト
- Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection [57.883265488038134]
本稿では,HGINetと呼ばれる階層的なグラフ相互作用ネットワークを提案する。
このネットワークは、階層的トークン化機能間の効果的なグラフ相互作用を通じて、知覚不能なオブジェクトを発見することができる。
本実験は,既存の最先端手法と比較して,HGINetの優れた性能を示すものである。
論文 参考訳(メタデータ) (2024-08-27T12:53:25Z) - Adaptive Guidance Learning for Camouflaged Object Detection [23.777432551429396]
本稿では,適応型誘導学習ネットワーク「textitAGLNet」を提案する。
広く使用されている3つのCODベンチマークデータセットの実験により,提案手法が大幅な性能向上を実現することが示された。
論文 参考訳(メタデータ) (2024-05-05T06:21:58Z) - Detecting Every Object from Events [24.58024539462497]
本稿では,イベントベースの視覚において,クラスに依存しない高速なオープンワールドオブジェクト検出を実現するためのアプローチとして,イベント中のすべてのオブジェクトの検出(DEOE)を提案する。
私たちのコードはhttps://github.com/Hatins/DEOEで公開されています。
論文 参考訳(メタデータ) (2024-04-08T08:20:53Z) - Frequency Perception Network for Camouflaged Object Detection [51.26386921922031]
周波数領域のセマンティック階層によって駆動される新しい学習可能かつ分離可能な周波数知覚機構を提案する。
ネットワーク全体では、周波数誘導粗い局所化ステージと細部保存の微細局在化ステージを含む2段階モデルを採用している。
提案手法は,既存のモデルと比較して,3つのベンチマークデータセットにおいて競合性能を実現する。
論文 参考訳(メタデータ) (2023-08-17T11:30:46Z) - Learning Remote Sensing Object Detection with Single Point Supervision [17.12725535531483]
Pointly Supervised Object Detection (PSOD) は、ボックスレベルの監視対象検出と比較してラベリングコストが低いため、かなりの関心を集めている。
本研究では,RS画像に適したPSOD法を提案する。
提案手法は,最先端の画像レベルとポイントレベルの教師付き検出法と比較して性能が大幅に向上し,PSODとボックスレベルの教師付きオブジェクト検出の差を低減できる。
論文 参考訳(メタデータ) (2023-05-23T15:06:04Z) - The Art of Camouflage: Few-Shot Learning for Animal Detection and Segmentation [21.047026366450197]
カモフラージュされた物体の検出とセグメンテーションにおける数ショット学習の問題に対処する。
そこで我々は, Camouflaged インスタンスを効率的に検出・分割するフレームワーク FS-CDIS を提案する。
提案手法は,新たに収集したデータセットの最先端性能を実現する。
論文 参考訳(メタデータ) (2023-04-15T01:33:14Z) - CamoFormer: Masked Separable Attention for Camouflaged Object Detection [94.2870722866853]
カモフラージュされた物体検出のための単純なマスク付き分離型注意(MSA)を提案する。
まず,マルチヘッド・セルフアテンションを3つの部分に分割し,異なるマスキング戦略を用いて,背景からカモフラージュした物体を識別する役割を担っている。
提案手法では,MSAを用いた単純なトップダウンデコーダを用いて,高精度なセグメンテーション結果を得るために,高分解能なセグメンテーション表現を段階的にキャプチャする。
論文 参考訳(メタデータ) (2022-12-10T10:03:27Z) - Towards Deeper Understanding of Camouflaged Object Detection [64.81987999832032]
バイナリセグメンテーション設定は、カモフラージュの概念を完全に理解できない。
そこで本研究では,カモフラージュされたオブジェクトの局所化,セグメント化,ランク付けを同時に行う3段階学習フレームワークを提案する。
論文 参考訳(メタデータ) (2022-05-23T14:26:18Z) - High-resolution Iterative Feedback Network for Camouflaged Object
Detection [128.893782016078]
カモフラージュされたオブジェクトを背景に視覚的に同化させることは、オブジェクト検出アルゴリズムにとって難しい。
エッジやバウンダリのぼやけた視界を生じさせる細部劣化を避けるために,高分解能テクスチャの詳細を抽出することを目的としている。
我々は,高解像度特徴量による低解像度表現を反復的フィードバック方式で洗練する新しいHitNetを提案する。
論文 参考訳(メタデータ) (2022-03-22T11:20:21Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
本稿では,超高アスペクト比,すなわちtextbfslender オブジェクトの特定タイプの検出について検討する。
古典的物体検出法では、細い物体に対してのみ評価される場合、COCO上の18.9%のmAPの劇的な低下が観察される。
論文 参考訳(メタデータ) (2020-11-17T09:39:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。