論文の概要: A method for estimating roadway billboard salience
- arxiv url: http://arxiv.org/abs/2501.07342v1
- Date: Mon, 13 Jan 2025 13:56:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:24:08.020859
- Title: A method for estimating roadway billboard salience
- Title(参考訳): 道路掲示板のサリエンス推定法
- Authors: Zuzana Berger Haladova, Michal Zrubec, Zuzana Cernekova,
- Abstract要約: 本研究は,運転者の視点から撮影した画像における道路広告の重要性を考察する。
道路沿いの広告を検出するニューラルネットワークの有効性を評価し、YOLOv5とFaster R-CNNモデルに焦点を当てる。
本研究は,都市高速道路走行中に捉えた視線追跡セッションのデータベースを構築し,サリエンシモデルを評価する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Roadside billboards and other forms of outdoor advertising play a crucial role in marketing initiatives; however, they can also distract drivers, potentially contributing to accidents. This study delves into the significance of roadside advertising in images captured from a driver's perspective. Firstly, it evaluates the effectiveness of neural networks in detecting advertising along roads, focusing on the YOLOv5 and Faster R-CNN models. Secondly, the study addresses the determination of billboard significance using methods for saliency extraction. The UniSal and SpectralResidual methods were employed to create saliency maps for each image. The study establishes a database of eye tracking sessions captured during city highway driving to assess the saliency models.
- Abstract(参考訳): 道路沿いの看板やその他の屋外広告は、マーケティングイニシアチブにおいて重要な役割を担っているが、ドライバーを気を散らし、事故に繋がる可能性がある。
本研究は,運転者の視点から撮影した画像における道路広告の重要性を考察する。
まず、道路沿いの広告を検出するニューラルネットワークの有効性を評価し、YOLOv5とFaster R-CNNモデルに注目した。
第2に,サリエンシ抽出法を用いた掲示板の意義決定について検討した。
UniSal と SpectralResidual の手法は、各画像のサリエンシマップを作成するために用いられた。
本研究は,都市高速道路走行中に捉えた視線追跡セッションのデータベースを構築し,サリエンシモデルを評価する。
関連論文リスト
- Monocular Lane Detection Based on Deep Learning: A Survey [51.19079381823076]
車線検出は自律運転認識システムにおいて重要な役割を果たす。
ディープラーニングアルゴリズムが普及するにつれて、それらに基づく単眼車線検出法は優れた性能を示した。
本稿では, 成熟度の高い2次元車線検出手法と開発途上国の3次元車線検出技術の両方を網羅して, 既存手法の概要を概説する。
論文 参考訳(メタデータ) (2024-11-25T12:09:43Z) - Cut-and-Paste with Precision: a Content and Perspective-aware Data Augmentation for Road Damage Detection [5.939858158928473]
道路の損傷は、道路インフラの完全性、安全性、耐久性に重大な課題をもたらす可能性がある。
近年、道路監視アプリケーションにおいて、画像に基づく損傷検出のための様々なデータ駆動手法が研究されている。
本稿では、コンテンツ認識(すなわち、画像中の道路の真の位置を考える)と視点認識(すなわち、注入された損傷と対象画像との視点の差を考慮する)の両面から改善されたカット・アンド・ペースト増強手法を提案する。
論文 参考訳(メタデータ) (2024-06-06T09:06:42Z) - Evaluating the Significance of Outdoor Advertising from Driver's
Perspective Using Computer Vision [1.6385815610837167]
運転者の視点で撮影したビデオにおいて,道路沿いの看板の重要性を評価するパイプラインを提案する。
我々は、視線追跡デバイスを装着して、事前に定義された経路を運転するドライバーが撮影した8つのビデオを含む、新しいBillboardLamacデータセットを収集し、注釈付けした。
YOLOv8検出器と組み合わせて様々な物体追跡手法を評価し,BillboardLamac上で38.5HOTAを達成できる最善のアプローチで広告広告を識別する。
論文 参考訳(メタデータ) (2023-11-13T15:14:53Z) - OpenLane-V2: A Topology Reasoning Benchmark for Unified 3D HD Mapping [84.65114565766596]
交通シーン構造を考慮したトポロジ推論のための最初のデータセットであるOpenLane-V2を提案する。
OpenLane-V2は2000のアノテートされた道路シーンで構成され、交通要素と車線との関係を記述している。
様々な最先端手法を評価し,OpenLane-V2の定量的,定性的な結果を示し,交通現場におけるトポロジ推論の今後の道筋を示す。
論文 参考訳(メタデータ) (2023-04-20T16:31:22Z) - Unsupervised Self-Driving Attention Prediction via Uncertainty Mining
and Knowledge Embedding [51.8579160500354]
本研究では、不確実性モデリングと知識統合の駆動による自動運転の注意を予測できる教師なし手法を提案する。
結果は、完全に教師された最先端のアプローチと比較して、同等またはさらに印象的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-03-17T00:28:33Z) - Salient Sign Detection In Safe Autonomous Driving: AI Which Reasons Over
Full Visual Context [2.799896314754614]
運転シーンにおける様々な交通標識は、運転者の判断に不平等な影響を及ぼす。
そこで我々は,有能な標識の性能を重視した交通信号検出モデルを構築した。
本研究では,Salience-Sensitive Focal Lossで訓練したモデルが,無訓練で訓練したモデルより優れていることを示す。
論文 参考訳(メタデータ) (2023-01-14T01:47:09Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
軌道予測は、自動運転車が行動を計画し実行するための安全クリティカルなツールです。
近年の手法は,WTAやベスト・オブ・マニーといったマルチコース学習の目標を用いて,強力なパフォーマンスを実現している。
我々の研究は、軌道予測、学習出力、そして運転知識を使って制約を課すことによるより良い予測における2つの重要な課題に対処する。
論文 参考訳(メタデータ) (2021-04-16T17:58:56Z) - iCurb: Imitation Learning-based Detection of Road Curbs using Aerial
Images for Autonomous Driving [11.576868193291997]
道路の縁石は自動運転に不可欠な能力です。
通常、道路の縁石は、ビデオカメラや3dlidarなどの車載センサーを使ってオンラインで検出される。
航空画像を用いた道路縁石のオフライン検出のための新しいソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-31T14:40:31Z) - Repopulating Street Scenes [59.2621467759251]
そこで本稿では,歩行者や車両などの物体を配置・非人口化・再人口化することにより,街頭シーンの画像を自動的に再構成する枠組みを提案する。
この手法の応用例としては、画像の匿名化によるプライバシー向上、自律運転のような知覚タスクのためのデータ強化などがある。
論文 参考訳(メタデータ) (2021-03-30T09:04:46Z) - Self-Supervised Steering Angle Prediction for Vehicle Control Using
Visual Odometry [55.11913183006984]
視覚オドメトリー法を用いて推定したカメラポーズを用いて,車両の軌道制御をモデルに訓練する方法を示す。
車両の前方にカメラを設置することにより,複数の異なる走行経路からの軌跡情報を活用するスケーラブルなフレームワークを提案する。
論文 参考訳(メタデータ) (2021-03-20T16:29:01Z) - Heatmap-Based Method for Estimating Drivers' Cognitive Distraction [0.0]
本研究では,認知過程がドライバの視線行動に与える影響について検討した。
認知的注意散らしを推定するために,ドライバの視線分散の新たなイメージベース表現を提案する。
論文 参考訳(メタデータ) (2020-05-28T16:37:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。