FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation
- URL: http://arxiv.org/abs/2501.07378v1
- Date: Mon, 13 Jan 2025 14:54:49 GMT
- Title: FedSemiDG: Domain Generalized Federated Semi-supervised Medical Image Segmentation
- Authors: Zhipeng Deng, Zhe Xu, Tsuyoshi Isshiki, Yefeng Zheng,
- Abstract summary: Medical image segmentation is challenging due to the diversity of medical images and the lack of labeled data.
We present a novel framework, Federated Generalization-Aware SemiSupervised Learning (FGASL), to address the challenges in FedSemiDG.
Our method significantly outperforms state-of-the-art FSSL and domain generalization approaches, achieving robust generalization on unseen domains.
- Score: 19.87797382888023
- License:
- Abstract: Medical image segmentation is challenging due to the diversity of medical images and the lack of labeled data, which motivates recent developments in federated semi-supervised learning (FSSL) to leverage a large amount of unlabeled data from multiple centers for model training without sharing raw data. However, what remains under-explored in FSSL is the domain shift problem which may cause suboptimal model aggregation and low effectivity of the utilization of unlabeled data, eventually leading to unsatisfactory performance in unseen domains. In this paper, we explore this previously ignored scenario, namely domain generalized federated semi-supervised learning (FedSemiDG), which aims to learn a model in a distributed manner from multiple domains with limited labeled data and abundant unlabeled data such that the model can generalize well to unseen domains. We present a novel framework, Federated Generalization-Aware SemiSupervised Learning (FGASL), to address the challenges in FedSemiDG by effectively tackling critical issues at both global and local levels. Globally, we introduce Generalization-Aware Aggregation (GAA), assigning adaptive weights to local models based on their generalization performance. Locally, we use a Dual-Teacher Adaptive Pseudo Label Refinement (DR) strategy to combine global and domain-specific knowledge, generating more reliable pseudo labels. Additionally, Perturbation-Invariant Alignment (PIA) enforces feature consistency under perturbations, promoting domain-invariant learning. Extensive experiments on three medical segmentation tasks (cardiac MRI, spine MRI and bladder cancer MRI) demonstrate that our method significantly outperforms state-of-the-art FSSL and domain generalization approaches, achieving robust generalization on unseen domains.
Related papers
- Domain-Guided Weight Modulation for Semi-Supervised Domain Generalization [11.392783918495404]
We study the challenging problem of semi-supervised domain generalization.
The goal is to learn a domain-generalizable model while using only a small fraction of labeled data and a relatively large fraction of unlabeled data.
We propose a novel method that can facilitate the generation of accurate pseudo-labels under various domain shifts.
arXiv Detail & Related papers (2024-09-04T01:26:23Z) - Disentangling Masked Autoencoders for Unsupervised Domain Generalization [57.56744870106124]
Unsupervised domain generalization is fast gaining attention but is still far from well-studied.
Disentangled Masked Auto (DisMAE) aims to discover the disentangled representations that faithfully reveal intrinsic features.
DisMAE co-trains the asymmetric dual-branch architecture with semantic and lightweight variation encoders.
arXiv Detail & Related papers (2024-07-10T11:11:36Z) - SSL-DG: Rethinking and Fusing Semi-supervised Learning and Domain
Generalization in Medical Image Segmentation [0.0]
We show that unseen target data can be represented by a linear combination of source data, which can be achieved by simple data augmentation.
We propose SSL-DG, fusing DG and SSL, to achieve cross-domain generalization with limited annotations.
arXiv Detail & Related papers (2023-11-05T07:44:40Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Single-domain Generalization in Medical Image Segmentation via Test-time
Adaptation from Shape Dictionary [64.5632303184502]
Domain generalization typically requires data from multiple source domains for model learning.
This paper studies the important yet challenging single domain generalization problem, in which a model is learned under the worst-case scenario with only one source domain to directly generalize to different unseen target domains.
We present a novel approach to address this problem in medical image segmentation, which extracts and integrates the semantic shape prior information of segmentation that are invariant across domains.
arXiv Detail & Related papers (2022-06-29T08:46:27Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
In this paper, we propose a novel Bidirectional Global-to-Local (BiGL) adaptation framework under a UDA scheme.
Specifically, a bidirectional image synthesis and segmentation module is proposed to segment the brain tumor.
The proposed method outperforms several state-of-the-art unsupervised domain adaptation methods by a large margin.
arXiv Detail & Related papers (2021-05-17T10:11:45Z) - FedDG: Federated Domain Generalization on Medical Image Segmentation via
Episodic Learning in Continuous Frequency Space [63.43592895652803]
Federated learning allows distributed medical institutions to collaboratively learn a shared prediction model with privacy protection.
While at clinical deployment, the models trained in federated learning can still suffer from performance drop when applied to completely unseen hospitals outside the federation.
We present a novel approach, named as Episodic Learning in Continuous Frequency Space (ELCFS), for this problem.
The effectiveness of our method is demonstrated with superior performance over state-of-the-arts and in-depth ablation experiments on two medical image segmentation tasks.
arXiv Detail & Related papers (2021-03-10T13:05:23Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Alleviating Semantic-level Shift: A Semi-supervised Domain Adaptation
Method for Semantic Segmentation [97.8552697905657]
A key challenge of this task is how to alleviate the data distribution discrepancy between the source and target domains.
We propose Alleviating Semantic-level Shift (ASS), which can successfully promote the distribution consistency from both global and local views.
We apply our ASS to two domain adaptation tasks, from GTA5 to Cityscapes and from Synthia to Cityscapes.
arXiv Detail & Related papers (2020-04-02T03:25:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.