Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations
- URL: http://arxiv.org/abs/2504.04771v1
- Date: Mon, 07 Apr 2025 06:55:15 GMT
- Title: Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations
- Authors: Leonardo Ranaldi, Federico Ranaldi, Fabio Massimo Zanzotto, Barry Haddow, Alexandra Birch,
- Abstract summary: We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.<n>We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
- Score: 65.11348389219887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Retrieval-augmented generation (RAG) is key to enhancing large language models (LLMs) to systematically access richer factual knowledge. Yet, using RAG brings intrinsic challenges, as LLMs must deal with potentially conflicting knowledge, especially in multilingual retrieval, where the heterogeneity of knowledge retrieved may deliver different outlooks. To make RAG more analytical, critical and grounded, we introduce Dialectic-RAG (DRAG), a modular approach guided by Argumentative Explanations, i.e., structured reasoning process that systematically evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives. Given a query and a set of multilingual related documents, DRAG selects and exemplifies relevant knowledge for delivering dialectic explanations that, by critically weighing opposing arguments and filtering extraneous content, clearly determine the final response. Through a series of in-depth experiments, we show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models. The final results demonstrate that DRAG significantly improves RAG approaches, requiring low-impact computational effort and providing robustness to knowledge perturbations.
Related papers
- Investigating Language Preference of Multilingual RAG Systems [4.438698005789677]
MRAG systems struggle with retrieving relevant information due to linguistic variations between queries and documents.<n>We propose Dual Knowledge Multilingual RAG, a framework that fuses translated multilingual passages with complementary model knowledge.<n> Empirical results demonstrate that DKM-RAG mitigates language preference in generation and enhances performance across diverse linguistic settings.
arXiv Detail & Related papers (2025-02-16T15:54:05Z) - Enhancing Retrieval-Augmented Generation: A Study of Best Practices [16.246719783032436]
We develop advanced RAG system designs that incorporate query expansion, various novel retrieval strategies, and a novel Contrastive In-Context Learning RAG.<n>Our study systematically investigates key factors, including language model size, prompt design, document chunk size, knowledge base size, retrieval stride, query expansion techniques, and Focus Mode retrieving relevant context at sentence-level.<n>Our findings offer actionable insights for developing RAG systems, striking a balance between contextual richness and retrieval-generation efficiency.
arXiv Detail & Related papers (2025-01-13T15:07:55Z) - Harnessing Large Language Models for Knowledge Graph Question Answering via Adaptive Multi-Aspect Retrieval-Augmentation [81.18701211912779]
We introduce an Adaptive Multi-Aspect Retrieval-augmented over KGs (Amar) framework.
This method retrieves knowledge including entities, relations, and subgraphs, and converts each piece of retrieved text into prompt embeddings.
Our method has achieved state-of-the-art performance on two common datasets.
arXiv Detail & Related papers (2024-12-24T16:38:04Z) - Eliciting Critical Reasoning in Retrieval-Augmented Language Models via Contrastive Explanations [4.697267141773321]
Retrieval-augmented generation (RAG) has emerged as a critical mechanism in contemporary NLP to support Large Language Models (LLMs) in systematically accessing richer factual context.
Recent studies have shown that LLMs still struggle to critically analyse RAG-based in-context information, a limitation that may lead to incorrect inferences and hallucinations.
In this paper, we investigate how to elicit critical reasoning in RAG via contrastive explanations.
arXiv Detail & Related papers (2024-10-30T10:11:53Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - StructRAG: Boosting Knowledge Intensive Reasoning of LLMs via Inference-time Hybrid Information Structurization [94.31508613367296]
Retrieval-augmented generation (RAG) is a key means to effectively enhance large language models (LLMs)
We propose StructRAG, which can identify the optimal structure type for the task at hand, reconstruct original documents into this structured format, and infer answers based on the resulting structure.
Experiments show that StructRAG achieves state-of-the-art performance, particularly excelling in challenging scenarios.
arXiv Detail & Related papers (2024-10-11T13:52:44Z) - Mindful-RAG: A Study of Points of Failure in Retrieval Augmented Generation [11.471919529192048]
Large Language Models (LLMs) are proficient at generating coherent and contextually relevant text.
Retrieval-augmented generation (RAG) systems mitigate this by incorporating external knowledge sources, such as structured knowledge graphs (KGs)
Our study investigates this dilemma by analyzing error patterns in existing KG-based RAG methods and identifying eight critical failure points.
arXiv Detail & Related papers (2024-07-16T23:50:07Z) - Retrieval Meets Reasoning: Even High-school Textbook Knowledge Benefits Multimodal Reasoning [49.3242278912771]
We introduce a novel multimodal RAG framework named RMR (Retrieval Meets Reasoning)
The RMR framework employs a bi-modal retrieval module to identify the most relevant question-answer pairs.
It significantly boosts the performance of various vision-language models across a spectrum of benchmark datasets.
arXiv Detail & Related papers (2024-05-31T14:23:49Z) - Re-Reading Improves Reasoning in Large Language Models [87.46256176508376]
We introduce a simple, yet general and effective prompting method, Re2, to enhance the reasoning capabilities of off-the-shelf Large Language Models (LLMs)
Unlike most thought-eliciting prompting methods, such as Chain-of-Thought (CoT), Re2 shifts the focus to the input by processing questions twice, thereby enhancing the understanding process.
We evaluate Re2 on extensive reasoning benchmarks across 14 datasets, spanning 112 experiments, to validate its effectiveness and generality.
arXiv Detail & Related papers (2023-09-12T14:36:23Z) - Enhancing Dialogue Generation via Multi-Level Contrastive Learning [57.005432249952406]
We propose a multi-level contrastive learning paradigm to model the fine-grained quality of the responses with respect to the query.
A Rank-aware (RC) network is designed to construct the multi-level contrastive optimization objectives.
We build a Knowledge Inference (KI) component to capture the keyword knowledge from the reference during training and exploit such information to encourage the generation of informative words.
arXiv Detail & Related papers (2020-09-19T02:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.