論文の概要: A Novel Approach to Network Traffic Analysis: the HERA tool
- arxiv url: http://arxiv.org/abs/2501.07475v1
- Date: Mon, 13 Jan 2025 16:47:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:20:10.933669
- Title: A Novel Approach to Network Traffic Analysis: the HERA tool
- Title(参考訳): ネットワークトラフィック分析の新しいアプローチ:HERAツール
- Authors: Daniela Pinto, Ivone Amorim, Eva Maia, Isabel Praça,
- Abstract要約: サイバーセキュリティの脅威は、堅牢なネットワーク侵入検知システムの必要性を浮き彫りにする。
これらのシステムは、パターンを検出し、脅威を予測する機械学習モデルをトレーニングするためのデータセットに大きく依存している。
HERAは、フローファイルとラベル付きまたは未ラベルのデータセットをユーザ定義の機能で生成する、新たなオープンソースツールである。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Cybersecurity threats highlight the need for robust network intrusion detection systems to identify malicious behaviour. These systems rely heavily on large datasets to train machine learning models capable of detecting patterns and predicting threats. In the past two decades, researchers have produced a multitude of datasets, however, some widely utilised recent datasets generated with CICFlowMeter contain inaccuracies. These result in flow generation and feature extraction inconsistencies, leading to skewed results and reduced system effectiveness. Other tools in this context lack ease of use, customizable feature sets, and flow labelling options. In this work, we introduce HERA, a new open-source tool that generates flow files and labelled or unlabelled datasets with user-defined features. Validated and tested with the UNSW-NB15 dataset, HERA demonstrated accurate flow and label generation.
- Abstract(参考訳): サイバーセキュリティの脅威は、悪意のある行動を特定するための堅牢なネットワーク侵入検知システムの必要性を浮き彫りにする。
これらのシステムは、パターンを検出し、脅威を予測する機械学習モデルをトレーニングするために、大規模なデータセットに大きく依存している。
過去20年間、研究者は多数のデータセットを作成してきたが、CICFlowMeterで生成された最近のデータセットには不正確さが含まれている。
これらの結果、フロー生成と特徴抽出の不整合が生じ、歪んだ結果となり、システムの有効性が低下する。
このコンテキストの他のツールは使いやすさ、カスタマイズ可能な機能セット、フローラベリングオプションがない。
本研究では,フローファイルを生成し,ユーザ定義機能を備えたラベル付きデータセットや非ラベル付きデータセットを生成する,新たなオープンソースツールであるHERAを紹介する。
UNSW-NB15データセットで検証およびテストを行い、HERAは正確なフローとラベルの生成を実証した。
関連論文リスト
- NetFlowGen: Leveraging Generative Pre-training for Network Traffic Dynamics [72.95483148058378]
我々は,NetFlowレコードからのトラフィックデータのみを用いて,トラフィックダイナミクスをキャプチャする汎用機械学習モデルを事前学習することを提案する。
ネットワーク特徴表現の統一,未ラベルの大規模トラフィックデータ量からの学習,DDoS攻撃検出における下流タスクのテストといった課題に対処する。
論文 参考訳(メタデータ) (2024-12-30T00:47:49Z) - Flow Exporter Impact on Intelligent Intrusion Detection Systems [0.0]
高品質なデータセットは、機械学習モデルのトレーニングに不可欠である。
特徴発生の不整合は、脅威検出の精度と信頼性を妨げる。
本稿では,侵入検知のための機械学習モデルの性能と信頼性に及ぼす流量輸出機の影響について検討する。
論文 参考訳(メタデータ) (2024-12-18T16:38:20Z) - TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
既存のデータセットは、しばしば不足しており、必要な多様性と現在のネットワーク環境との整合性が欠如している。
本稿では,これらの課題を克服するための新しい包括的データセットであるTII-SSRC-23を紹介する。
論文 参考訳(メタデータ) (2023-09-14T05:23:36Z) - Anomaly Detection Dataset for Industrial Control Systems [1.2234742322758418]
産業制御システム(ICS)はサイバー攻撃の対象となり、ますます脆弱になりつつある。
機械学習アルゴリズムを評価するのに適したデータセットがないことは、課題である。
本稿では、教師付きおよび教師なしMLベースのIDS評価のためのネットワークデータとプロセス状態変数ログを提供する「ICS-Flow」データセットを提案する。
論文 参考訳(メタデータ) (2023-05-11T14:52:19Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
確率的生成モデルの観点からPCAに基づく異常検出手法を再検討する。
2つの異なるデータセットを用いて数学的モデルを評価した。
論文 参考訳(メタデータ) (2023-02-02T13:41:18Z) - Neural Relation Graph: A Unified Framework for Identifying Label Noise
and Outlier Data [44.64190826937705]
本稿では,データのリレーショナルグラフ構造に基づいてラベルエラーや外れ値データを検出するスケーラブルなアルゴリズムを提案する。
また,特徴埋め込み空間におけるデータポイントのコンテキスト情報を提供する可視化ツールも導入した。
提案手法は,検討対象のタスクすべてに対して最先端検出性能を達成し,大規模実世界のデータセットでその有効性を実証する。
論文 参考訳(メタデータ) (2023-01-29T02:09:13Z) - DAE : Discriminatory Auto-Encoder for multivariate time-series anomaly
detection in air transportation [68.8204255655161]
識別オートエンコーダ(DAE)と呼ばれる新しい異常検出モデルを提案する。
通常のLSTMベースのオートエンコーダのベースラインを使用するが、いくつかのデコーダがあり、それぞれ特定の飛行フェーズのデータを取得する。
その結果,DAEは精度と検出速度の両方で良好な結果が得られることがわかった。
論文 参考訳(メタデータ) (2021-09-08T14:07:55Z) - An Explainable Machine Learning-based Network Intrusion Detection System
for Enabling Generalisability in Securing IoT Networks [0.0]
機械学習(ML)ベースのネットワーク侵入検知システムは、組織のセキュリティ姿勢を高める多くの利点をもたらす。
多くのシステムは研究コミュニティで設計・開発されており、特定のデータセットを用いて評価すると、しばしば完璧な検出率を達成する。
本稿では,異なるネットワーク環境と攻撃タイプに設定した共通機能の汎用性を評価することにより,ギャップを狭める。
論文 参考訳(メタデータ) (2021-04-15T00:44:45Z) - Supervised Feature Selection Techniques in Network Intrusion Detection:
a Critical Review [9.177695323629896]
機械学習技術は、ネットワーク侵入検出の貴重なサポートになりつつある。
データトラフィックを特徴付ける膨大な多様性と多数の機能に対処することは難しい問題です。
機能領域を縮小し、最も重要な機能のみを保持することで、FS(Feature Selection)はネットワーク管理において重要な前処理ステップとなる。
論文 参考訳(メタデータ) (2021-04-11T08:42:01Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Contextual-Bandit Anomaly Detection for IoT Data in Distributed
Hierarchical Edge Computing [65.78881372074983]
IoTデバイスは複雑なディープニューラルネットワーク(DNN)モデルにはほとんど余裕がなく、異常検出タスクをクラウドにオフロードすることは長い遅延を引き起こす。
本稿では,分散階層エッジコンピューティング(HEC)システムを対象とした適応型異常検出手法のデモと構築を行う。
提案手法は,検出タスクをクラウドにオフロードした場合と比較して,精度を犠牲にすることなく検出遅延を著しく低減することを示す。
論文 参考訳(メタデータ) (2020-04-15T06:13:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。