論文の概要: Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback
- arxiv url: http://arxiv.org/abs/2501.07507v1
- Date: Mon, 13 Jan 2025 17:25:46 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-14 14:21:30.076061
- Title: Inductive Learning of Robot Task Knowledge from Raw Data and Online Expert Feedback
- Title(参考訳): 生データとオンライン専門家フィードバックを用いたロボットタスク知識の帰納学習
- Authors: Daniele Meli, Paolo Fiorini,
- Abstract要約: ロボットの自律性の向上は、特に人間とロボットの相互作用シナリオにおいて、信頼と社会的受容の課題を引き起こす。
これはロボット認知能力の解釈可能な実装を必要としており、おそらくはタスク仕様の定義のための論理としての形式的手法に基づいている。
本稿では,タスク仕様を抽出するノイズの多い例から,帰納的論理プログラミングに基づくオフラインアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 3.10979520014442
- License:
- Abstract: The increasing level of autonomy of robots poses challenges of trust and social acceptance, especially in human-robot interaction scenarios. This requires an interpretable implementation of robotic cognitive capabilities, possibly based on formal methods as logics for the definition of task specifications. However, prior knowledge is often unavailable in complex realistic scenarios. In this paper, we propose an offline algorithm based on inductive logic programming from noisy examples to extract task specifications (i.e., action preconditions, constraints and effects) directly from raw data of few heterogeneous (i.e., not repetitive) robotic executions. Our algorithm leverages on the output of any unsupervised action identification algorithm from video-kinematic recordings. Combining it with the definition of very basic, almost task-agnostic, commonsense concepts about the environment, which contribute to the interpretability of our methodology, we are able to learn logical axioms encoding preconditions of actions, as well as their effects in the event calculus paradigm. Since the quality of learned specifications depends mainly on the accuracy of the action identification algorithm, we also propose an online framework for incremental refinement of task knowledge from user feedback, guaranteeing safe execution. Results in a standard manipulation task and benchmark for user training in the safety-critical surgical robotic scenario, show the robustness, data- and time-efficiency of our methodology, with promising results towards the scalability in more complex domains.
- Abstract(参考訳): ロボットの自律性の増大は、特に人間とロボットの相互作用のシナリオにおいて、信頼と社会的受容の課題を引き起こす。
これはロボット認知能力の解釈可能な実装を必要としており、おそらくはタスク仕様の定義のための論理としての形式的手法に基づいている。
しかし、複雑な現実的なシナリオでは、事前の知識は利用できないことが多い。
本稿では,不均一な(反復的ではない)ロボット実行の生データから直接タスク仕様(行動条件,制約,効果)を抽出するために,雑音の多い例から帰納的論理プログラミングに基づくオフラインアルゴリズムを提案する。
本アルゴリズムは,ビデオキネマティック記録からの教師なし動作識別アルゴリズムの出力を利用する。
方法論の解釈可能性に寄与する環境に関する、非常に基本的な、ほぼタスクに依存しない、常識的な概念の定義と組み合わせることで、行動の前提条件を符号化する論理公理と、事象計算パラダイムにおけるそれらの影響を学習することができる。
学習した仕様の質は、主に行動識別アルゴリズムの精度に依存するため、ユーザフィードバックからタスク知識を段階的に改善し、安全な実行を保証するオンラインフレームワークも提案する。
安全クリティカルな手術ロボットシナリオにおけるユーザトレーニングのための標準操作タスクとベンチマークの結果は、我々の方法論の堅牢性、データおよび時間効率を示し、より複雑なドメインのスケーラビリティに向けた有望な結果をもたらす。
関連論文リスト
- Interactive Agents to Overcome Ambiguity in Software Engineering [61.40183840499932]
AIエージェントは、あいまいで不明確なユーザー指示に基づいて、タスクを自動化するためにますますデプロイされている。
不安定な仮定をし、明確な質問をしないことは、最適以下の結果につながる可能性がある。
対話型コード生成設定において,LLMエージェントが不明瞭な命令を処理する能力について,プロプライエタリモデルとオープンウェイトモデルを評価して検討する。
論文 参考訳(メタデータ) (2025-02-18T17:12:26Z) - Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Hierarchical Deep Learning for Intention Estimation of Teleoperation Manipulation in Assembly Tasks [2.4913500484755087]
人間とロボットのコラボレーションにおいて、共有制御は、製造および組み立てプロセスの効率を改善するためにロボット操作を遠隔操作する機会を提供する。
この目的のためには、行動観察に依存して、頑健で迅速な意図推定が必要である。
このフレームワークは、ニューラルネットワークにマルチスケール階層情報を組み込むことにより、階層レベルでの意図推定手法、すなわち低レベルな行動と高レベルなタスクを示す。
様々な入力による予測力の分析は、予測精度と早期意図同定の点で、深層階層モデルの優位性を示す。
論文 参考訳(メタデータ) (2024-03-28T18:45:43Z) - From Reals to Logic and Back: Inventing Symbolic Vocabularies, Actions,
and Models for Planning from Raw Data [20.01856556195228]
本稿では,抽象状態と行動に対する論理に基づく関係表現を自律的に学習する最初の手法を提案する。
学習された表現は自動発明されたPDDLのようなドメインモデルを構成する。
決定論的設定における実証的な結果は、少数のロボット軌道から強力な抽象表現を学ぶことができることを示している。
論文 参考訳(メタデータ) (2024-02-19T06:28:21Z) - Task-Guided IRL in POMDPs that Scales [22.594913269327353]
逆線形強化学習(IRL)では、学習エージェントは、専門家のデモンストレーションを用いて、基礎となるタスクをコードする報酬関数を推論する。
ほとんどのIRL技術は、POMDPの計算前方問題(報酬関数を与えられた最適ポリシーを計算)を必要とする。
我々は,データ効率を向上しながら,情報量を削減するアルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-12-30T21:08:57Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
本研究では,時間論理仕様を満たすための学習課題を,未知の環境下でエージェントのグループで検討する。
我々は、時間論理仕様のための最初のマルチエージェント強化学習手法を開発した。
主アルゴリズムの正確性と収束性を保証する。
論文 参考訳(メタデータ) (2021-02-01T01:13:03Z) - CausalWorld: A Robotic Manipulation Benchmark for Causal Structure and
Transfer Learning [138.40338621974954]
CausalWorldは、ロボット操作環境における因果構造と伝達学習のベンチマークである。
タスクは、ブロックのセットから3D形状を構築することで構成される。
論文 参考訳(メタデータ) (2020-10-08T23:01:13Z) - Explainable robotic systems: Understanding goal-driven actions in a
reinforcement learning scenario [1.671353192305391]
強化学習のシナリオでは、データ駆動アプローチによる説明の提供に多くの努力が注がれている。
本研究では,ロボットシナリオにおけるタスクを実行する強化学習エージェントの意思決定プロセスに焦点をあてる。
我々は、メモリベース、学習ベース、イントロスペクションベースの3つの異なるアプローチによって計算される成功確率を利用する。
論文 参考訳(メタデータ) (2020-06-24T10:51:14Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
従来のロボットのアプローチは、環境の正確なモデル、タスクの実行方法の詳細な説明、現在の状態を追跡するための堅牢な認識システムに依存している。
強化学習アプローチは、タスクを記述するための報酬信号だけで、生の感覚入力から直接操作することができるが、非常にサンプル非効率で脆弱である。
本研究では,ロボットの知覚・運動パイプラインにおける不正確さを克服できる一般的な手法を得るために,モデルに基づく手法の強みと学習に基づく手法の柔軟性を組み合わせる。
論文 参考訳(メタデータ) (2020-05-21T19:47:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。