Dynamic Prototype Rehearsal for Continual Learning in ECG Arrhythmia Detection
- URL: http://arxiv.org/abs/2501.07555v1
- Date: Mon, 13 Jan 2025 18:37:10 GMT
- Title: Dynamic Prototype Rehearsal for Continual Learning in ECG Arrhythmia Detection
- Authors: Sana Rahmani, Reetam Chatterjee, Ali Etemad, Javad Hashemi,
- Abstract summary: We present DREAM-CL, a novel Continual Learning (CL) method for ECG arrhythmia detection.
DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session.
We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets.
- Score: 19.42660202621804
- License:
- Abstract: Continual Learning (CL) methods aim to learn from a sequence of tasks while avoiding the challenge of forgetting previous knowledge. We present DREAM-CL, a novel CL method for ECG arrhythmia detection that introduces dynamic prototype rehearsal memory. DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session. Within each cluster, we apply a smooth sorting operation that ranks samples by training difficulty, compressing extreme values and removing outliers. The more challenging samples are then chosen as prototypes for the rehearsal memory, ensuring effective knowledge retention across sessions. We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets, Chapman and PTB-XL. The results demonstrate that DREAM-CL outperforms the state-of-the-art in CL for ECG arrhythmia detection. Detailed ablation and sensitivity studies are performed to validate the different design choices of our method.
Related papers
- SODor: Long-Term EEG Partitioning for Seizure Onset Detection [32.453257844419504]
We propose a two-stage framework, method, that explicitly models seizure onset through a novel task formulation of subsequence clustering.
Our method can correct misclassifications, achieving 5%-11% classification improvements over other baselines and accurately detecting seizure onsets.
arXiv Detail & Related papers (2024-12-20T06:42:58Z) - Take the Bull by the Horns: Hard Sample-Reweighted Continual Training
Improves LLM Generalization [165.98557106089777]
A key challenge is to enhance the capabilities of large language models (LLMs) amid a looming shortage of high-quality training data.
Our study starts from an empirical strategy for the light continual training of LLMs using their original pre-training data sets.
We then formalize this strategy into a principled framework of Instance-Reweighted Distributionally Robust Optimization.
arXiv Detail & Related papers (2024-02-22T04:10:57Z) - Learning with Noisy Labels Using Collaborative Sample Selection and
Contrastive Semi-Supervised Learning [76.00798972439004]
Collaborative Sample Selection (CSS) removes noisy samples from identified clean set.
We introduce a co-training mechanism with a contrastive loss in semi-supervised learning.
arXiv Detail & Related papers (2023-10-24T05:37:20Z) - Combating Label Noise With A General Surrogate Model For Sample Selection [77.45468386115306]
We propose to leverage the vision-language surrogate model CLIP to filter noisy samples automatically.
We validate the effectiveness of our proposed method on both real-world and synthetic noisy datasets.
arXiv Detail & Related papers (2023-10-16T14:43:27Z) - ECG-SL: Electrocardiogram(ECG) Segment Learning, a deep learning method
for ECG signal [19.885905393439014]
We propose a novel ECG-Segment based Learning (ECG-SL) framework to explicitly model the periodic nature of ECG signals.
Based on the structural features, a temporal model is designed to learn the temporal information for various clinical tasks.
The proposed method outperforms the baseline model and shows competitive performances compared with task-specific methods in three clinical applications.
arXiv Detail & Related papers (2023-10-01T23:17:55Z) - ECG-CL: A Comprehensive Electrocardiogram Interpretation Method Based on
Continual Learning [20.465733855762835]
Electrocardiogram (ECG) monitoring is one of the most powerful technique of cardiovascular disease (CVD) early identification.
Classic rule-based algorithms are now completely outperformed by deep learning based methods.
We propose a multi-resolution model that can sustain high-resolution low-level semantic information throughout.
arXiv Detail & Related papers (2023-04-10T15:19:00Z) - Multimodality Multi-Lead ECG Arrhythmia Classification using
Self-Supervised Learning [5.675787521359948]
We propose SSL-based multimodality ECG classification.
Our proposed network follows SSL learning paradigm and consists of two modules corresponding to pre-stream task, and down-stream task.
To evaluate the effectiveness of our approach, ten-fold cross validation on the 12-lead PhysioNet 2020 dataset has been conducted.
arXiv Detail & Related papers (2022-09-30T18:45:34Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
We introduce Cluster Learnability (CL) to assess learnability.
CL is measured in terms of the performance of a KNN trained to predict labels obtained by clustering the representations with K-means.
We find that CL better correlates with in-distribution model performance than other competing recent evaluation schemes.
arXiv Detail & Related papers (2022-06-02T19:05:13Z) - LifeLonger: A Benchmark for Continual Disease Classification [59.13735398630546]
We introduce LifeLonger, a benchmark for continual disease classification on the MedMNIST collection.
Task and class incremental learning of diseases address the issue of classifying new samples without re-training the models from scratch.
Cross-domain incremental learning addresses the issue of dealing with datasets originating from different institutions while retaining the previously obtained knowledge.
arXiv Detail & Related papers (2022-04-12T12:25:05Z) - Uncovering the structure of clinical EEG signals with self-supervised
learning [64.4754948595556]
Supervised learning paradigms are often limited by the amount of labeled data that is available.
This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG)
By extracting information from unlabeled data, it might be possible to reach competitive performance with deep neural networks.
arXiv Detail & Related papers (2020-07-31T14:34:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.