An Explainable Pipeline for Machine Learning with Functional Data
- URL: http://arxiv.org/abs/2501.07602v2
- Date: Wed, 12 Feb 2025 17:41:23 GMT
- Title: An Explainable Pipeline for Machine Learning with Functional Data
- Authors: Katherine Goode, J. Derek Tucker, Daniel Ries, Heike Hofmann,
- Abstract summary: We consider two applications from high-consequence spaces with objectives of making predictions using functional data inputs.
One application aims to classify material types to identify explosive materials given hyperspectral computed tomography scans of the materials.
The other application considers the forensics science task of connecting an inkjet printed document to the source printer using color signatures extracted by Raman spectroscopy.
- Score: 0.1874930567916036
- License:
- Abstract: Machine learning (ML) models have shown success in applications with an objective of prediction, but the algorithmic complexity of some models makes them difficult to interpret. Methods have been proposed to provide insight into these "black-box" models, but there is little research that focuses on supervised ML when the model inputs are functional data. In this work, we consider two applications from high-consequence spaces with objectives of making predictions using functional data inputs. One application aims to classify material types to identify explosive materials given hyperspectral computed tomography scans of the materials. The other application considers the forensics science task of connecting an inkjet printed document to the source printer using color signatures extracted by Raman spectroscopy. An instinctive route to consider for analyzing these data is a data driven ML model for classification, but due to the high consequence nature of the applications, we argue it is important to appropriately account for the nature of the data in the analysis to not obscure or misrepresent patterns. As such, we propose the Variable importance Explainable Elastic Shape Analysis (VEESA) pipeline for training ML models with functional data that (1) accounts for the vertical and horizontal variability in the functional data and (2) provides an explanation in the original data space of how the model uses variability in the functional data for prediction. The pipeline makes use of elastic functional principal components analysis (efPCA) to generate uncorrelated model inputs and permutation feature importance (PFI) to identify the principal components important for prediction. The variability captured by the important principal components in visualized the original data space. We ultimately discuss ideas for natural extensions of the VEESA pipeline and challenges for future research.
Related papers
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - LLM-Select: Feature Selection with Large Language Models [64.5099482021597]
Large language models (LLMs) are capable of selecting the most predictive features, with performance rivaling the standard tools of data science.
Our findings suggest that LLMs may be useful not only for selecting the best features for training but also for deciding which features to collect in the first place.
arXiv Detail & Related papers (2024-07-02T22:23:40Z) - Decomposing and Editing Predictions by Modeling Model Computation [75.37535202884463]
We introduce a task called component modeling.
The goal of component modeling is to decompose an ML model's prediction in terms of its components.
We present COAR, a scalable algorithm for estimating component attributions.
arXiv Detail & Related papers (2024-04-17T16:28:08Z) - Prospector Heads: Generalized Feature Attribution for Large Models & Data [82.02696069543454]
We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
arXiv Detail & Related papers (2024-02-18T23:01:28Z) - Notes on Applicability of Explainable AI Methods to Machine Learning
Models Using Features Extracted by Persistent Homology [0.0]
Persistent homology (PH) has found wide-ranging applications in machine learning.
The ability to achieve satisfactory levels of accuracy with relatively simple downstream machine learning models, when processing these extracted features, underlines the pipeline's superior interpretability.
We explore the potential application of explainable AI methodologies to this PH-ML pipeline.
arXiv Detail & Related papers (2023-10-15T08:56:15Z) - Metric Tools for Sensitivity Analysis with Applications to Neural
Networks [0.0]
Explainable Artificial Intelligence (XAI) aims to provide interpretations for predictions made by Machine Learning models.
In this paper, a theoretical framework is proposed to study sensitivities of ML models using metric techniques.
A complete family of new quantitative metrics called $alpha$-curves is extracted.
arXiv Detail & Related papers (2023-05-03T18:10:21Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Probabilistic Tracking with Deep Factors [8.030212474745879]
We show how to use a deep feature encoding in conjunction with generative densities over the features in a factor-graph based, probabilistic tracking framework.
We present a likelihood model that combines a learned feature encoder with generative densities over them, both trained in a supervised manner.
arXiv Detail & Related papers (2021-12-02T21:31:51Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Explaining Neural Network Predictions for Functional Data Using
Principal Component Analysis and Feature Importance [0.0]
We propose a procedure for explaining machine learning models fit using functional data.
We demonstrate the technique by explaining neural networks fit to explosion optical spectral-temporal signatures.
arXiv Detail & Related papers (2020-10-15T22:33:21Z) - Controlling for sparsity in sparse factor analysis models: adaptive
latent feature sharing for piecewise linear dimensionality reduction [2.896192909215469]
We propose a simple and tractable parametric feature allocation model which can address key limitations of current latent feature decomposition techniques.
We derive a novel adaptive Factor analysis (aFA), as well as, an adaptive probabilistic principle component analysis (aPPCA) capable of flexible structure discovery and dimensionality reduction.
We show that aPPCA and aFA can infer interpretable high level features both when applied on raw MNIST and when applied for interpreting autoencoder features.
arXiv Detail & Related papers (2020-06-22T16:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.