Prospector Heads: Generalized Feature Attribution for Large Models & Data
- URL: http://arxiv.org/abs/2402.11729v2
- Date: Thu, 20 Jun 2024 00:29:16 GMT
- Title: Prospector Heads: Generalized Feature Attribution for Large Models & Data
- Authors: Gautam Machiraju, Alexander Derry, Arjun Desai, Neel Guha, Amir-Hossein Karimi, James Zou, Russ Altman, Christopher RĂ©, Parag Mallick,
- Abstract summary: We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods.
We demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data.
- Score: 82.02696069543454
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Feature attribution, the ability to localize regions of the input data that are relevant for classification, is an important capability for ML models in scientific and biomedical domains. Current methods for feature attribution, which rely on "explaining" the predictions of end-to-end classifiers, suffer from imprecise feature localization and are inadequate for use with small sample sizes and high-dimensional datasets due to computational challenges. We introduce prospector heads, an efficient and interpretable alternative to explanation-based attribution methods that can be applied to any encoder and any data modality. Prospector heads generalize across modalities through experiments on sequences (text), images (pathology), and graphs (protein structures), outperforming baseline attribution methods by up to 26.3 points in mean localization AUPRC. We also demonstrate how prospector heads enable improved interpretation and discovery of class-specific patterns in input data. Through their high performance, flexibility, and generalizability, prospectors provide a framework for improving trust and transparency for ML models in complex domains.
Related papers
- Feature graphs for interpretable unsupervised tree ensembles: centrality, interaction, and application in disease subtyping [0.24578723416255746]
Feature selection assumes a pivotal role in enhancing model interpretability.
The accuracy gained from aggregating decision trees comes at the expense of interpretability.
The study introduces novel methods to construct feature graphs from unsupervised random forests.
arXiv Detail & Related papers (2024-04-27T12:47:37Z) - Learning Decomposable and Debiased Representations via Attribute-Centric Information Bottlenecks [21.813755593742858]
Biased attributes, spuriously correlated with target labels in a dataset, can problematically lead to neural networks that learn improper shortcuts for classifications.
We propose a novel debiasing framework, Debiasing Global Workspace, introducing attention-based information bottlenecks for learning compositional representations of attributes.
We conduct comprehensive evaluations on biased datasets, along with both quantitative and qualitative analyses, to showcase our approach's efficacy.
arXiv Detail & Related papers (2024-03-21T05:33:49Z) - SSPNet: Scale and Spatial Priors Guided Generalizable and Interpretable
Pedestrian Attribute Recognition [23.55622798950833]
A novel Scale and Spatial Priors Guided Network (SSPNet) is proposed for Pedestrian Attribute Recognition (PAR) models.
SSPNet learns to provide reasonable scale prior information for different attribute groups, allowing the model to focus on different levels of feature maps.
A novel IoU based attribute localization metric is proposed for Weakly-supervised Pedestrian Attribute localization (WPAL) based on the improved Grad-CAM for attribute response mask.
arXiv Detail & Related papers (2023-12-11T00:41:40Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Input-Output Balanced Framework for Long-tailed LiDAR Semantic
Segmentation [12.639524717464509]
We propose an input-output balanced framework to handle the issue of long-tailed distribution.
For the input space, we synthesize these tailed instances from mesh models and well simulate the position and density distribution of LiDAR scan.
For the output space, a multi-head block is proposed to group different categories based on their shapes and instance amounts.
arXiv Detail & Related papers (2021-03-26T05:42:11Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z) - A Framework to Learn with Interpretation [2.3741312212138896]
We present a novel framework to jointly learn a predictive model and its associated interpretation model.
We seek for a small-size dictionary of high level attribute functions that take as inputs the outputs of selected hidden layers.
A detailed pipeline to visualize the learnt features is also developed.
arXiv Detail & Related papers (2020-10-19T09:26:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.