CDS: Data Synthesis Method Guided by Cognitive Diagnosis Theory
- URL: http://arxiv.org/abs/2501.07674v1
- Date: Mon, 13 Jan 2025 20:13:59 GMT
- Title: CDS: Data Synthesis Method Guided by Cognitive Diagnosis Theory
- Authors: Haokun Zhao, Jinyi Han, Jiaqing Liang, Yanghua Xiao,
- Abstract summary: This study introduces the Cognitive Diagnostic Synthesis (CDS) method, which employs Cognitive Diagnosis Theory (CDT) for precise evaluation and targeted enhancement of Large Language Models (LLMs)
By decomposing complex tasks into discrete knowledge points, CDS accurately identifies and synthesizes data targeting model weaknesses, thereby enhancing the model's performance.
This framework proposes a comprehensive pipeline driven by knowledge point evaluation, synthesis, data augmentation, and filtering, which significantly improves the model's mathematical and coding capabilities, achieving up to an 11.12% improvement in optimal scenarios.
- Score: 38.32540433374892
- License:
- Abstract: Large Language Models (LLMs) have demonstrated outstanding capabilities across various domains, but the increasing complexity of new challenges demands enhanced performance and adaptability. Traditional benchmarks, although comprehensive, often lack the granularity needed for detailed capability analysis. This study introduces the Cognitive Diagnostic Synthesis (CDS) method, which employs Cognitive Diagnosis Theory (CDT) for precise evaluation and targeted enhancement of LLMs. By decomposing complex tasks into discrete knowledge points, CDS accurately identifies and synthesizes data targeting model weaknesses, thereby enhancing the model's performance. This framework proposes a comprehensive pipeline driven by knowledge point evaluation, synthesis, data augmentation, and filtering, which significantly improves the model's mathematical and coding capabilities, achieving up to an 11.12% improvement in optimal scenarios.
Related papers
- Enhancing Few-Shot Learning with Integrated Data and GAN Model Approaches [35.431340001608476]
This paper presents an innovative approach to enhancing few-shot learning by integrating data augmentation with model fine-tuning.
It aims to tackle the challenges posed by small-sample data in fields such as drug discovery, target recognition, and malicious traffic detection.
Results confirm that the MhERGAN algorithm developed in this research is highly effective for few-shot learning.
arXiv Detail & Related papers (2024-11-25T16:51:11Z) - Adversarial Learning for Neural PDE Solvers with Sparse Data [4.226449585713182]
This study introduces a universal learning strategy for neural network PDEs, named Systematic Model Augmentation for Robust Training.
By focusing on challenging and improving the model's weaknesses, SMART reduces generalization error during training under data-scarce conditions.
arXiv Detail & Related papers (2024-09-04T04:18:25Z) - How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation [6.547981908229007]
We show how architectural and framework biases combine to influence model performance.
Experiments show imputation performance variations of up to 20% based on preprocessing and implementation choices.
We identify critical gaps between current deep imputation methods and medical requirements.
arXiv Detail & Related papers (2024-07-11T12:33:28Z) - Unveiling the Flaws: Exploring Imperfections in Synthetic Data and Mitigation Strategies for Large Language Models [89.88010750772413]
Synthetic data has been proposed as a solution to address the issue of high-quality data scarcity in the training of large language models (LLMs)
Our work delves into these specific flaws associated with question-answer (Q-A) pairs, a prevalent type of synthetic data, and presents a method based on unlearning techniques to mitigate these flaws.
Our work has yielded key insights into the effective use of synthetic data, aiming to promote more robust and efficient LLM training.
arXiv Detail & Related papers (2024-06-18T08:38:59Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
We propose a unified uncertainty estimation approach for a wide range of cognitive diagnosis models.
We decompose the uncertainty of diagnostic parameters into data aspect and model aspect.
Our method is effective and can provide useful insights into the uncertainty of cognitive diagnosis.
arXiv Detail & Related papers (2024-03-09T13:48:20Z) - Less is more: Ensemble Learning for Retinal Disease Recognition Under
Limited Resources [12.119196313470887]
This paper introduces a novel ensemble learning mechanism designed for recognizing retinal diseases under limited resources.
The mechanism leverages insights from multiple pre-trained models, facilitating the transfer and adaptation of their knowledge to Retinal OCT images.
arXiv Detail & Related papers (2024-02-15T06:58:25Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - A General Framework for Sample-Efficient Function Approximation in
Reinforcement Learning [132.45959478064736]
We propose a general framework that unifies model-based and model-free reinforcement learning.
We propose a novel estimation function with decomposable structural properties for optimization-based exploration.
Under our framework, a new sample-efficient algorithm namely OPtimization-based ExploRation with Approximation (OPERA) is proposed.
arXiv Detail & Related papers (2022-09-30T17:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.