BMIP: Bi-directional Modality Interaction Prompt Learning for VLM
- URL: http://arxiv.org/abs/2501.07769v1
- Date: Tue, 14 Jan 2025 00:59:55 GMT
- Title: BMIP: Bi-directional Modality Interaction Prompt Learning for VLM
- Authors: Song-Lin Lv, Yu-Yang Chen, Zhi Zhou, Ming Yang, Lan-Zhe Guo,
- Abstract summary: We propose a novel prompt learning method called $underlinetextbfBi-directional underlinetextbfModality underlinetextbfInteraction underlinetextbfPrompt (BMIP)$.<n>BMIP weights bi-modal information through learning the information of the attention layer, enhancing trainability and inter-modal consistency compared to simple information aggregation methods.
- Score: 18.196058385987506
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Vision-language models (VLMs) have exhibited remarkable generalization capabilities, and prompt learning for VLMs has attracted great attention for the ability to adapt pre-trained VLMs to specific downstream tasks. However, existing studies mainly focus on single-modal prompts or uni-directional modality interaction, overlooking the powerful alignment effects resulting from the interaction between the vision and language modalities. To this end, we propose a novel prompt learning method called $\underline{\textbf{B}}i-directional \underline{\textbf{M}}odality \underline{\textbf{I}}nteraction \underline{\textbf{P}}rompt (BMIP)$, which dynamically weights bi-modal information through learning the information of the attention layer, enhancing trainability and inter-modal consistency compared to simple information aggregation methods. To evaluate the effectiveness of prompt learning methods, we propose a more realistic evaluation paradigm called open-world generalization complementing the widely adopted cross-dataset transfer and domain generalization tasks. Comprehensive experiments on various datasets reveal that BMIP not only outperforms current state-of-the-art methods across all three evaluation paradigms but is also flexible enough to be combined with other prompt-based methods for consistent performance enhancement.
Related papers
- Multi-Modal Self-Supervised Semantic Communication [52.76990720898666]
We propose a multi-modal semantic communication system that leverages multi-modal self-supervised learning to enhance task-agnostic feature extraction.
The proposed approach effectively captures both modality-invariant and modality-specific features while minimizing training-related communication overhead.
The findings underscore the advantages of multi-modal self-supervised learning in semantic communication, paving the way for more efficient and scalable edge inference systems.
arXiv Detail & Related papers (2025-03-18T06:13:02Z) - Efficient Transfer Learning for Video-language Foundation Models [13.166348605993292]
We propose a parameter-efficient Multi-modalpatio Ssupervised-Temporal Adapter (MSTA) to enhance alignment between textual and visual representations.
We evaluate the effectiveness of our approach across four tasks: zero-shot transfer, few-shot learning, base-to-novel generalization, and fully-Temporal learning.
arXiv Detail & Related papers (2024-11-18T01:25:58Z) - LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
Existing methods rely heavily on modal-specific pretraining and joint-modal tuning, leading to significant computational burdens when expanding to new modalities.
We propose PathWeave, a flexible and scalable framework with modal-Path sWitching and ExpAnsion abilities.
PathWeave performs comparably to state-of-the-art MLLMs while concurrently reducing parameter training burdens by 98.73%.
arXiv Detail & Related papers (2024-10-26T13:19:57Z) - RA-BLIP: Multimodal Adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training [55.54020926284334]
Multimodal Large Language Models (MLLMs) have recently received substantial interest, which shows their emerging potential as general-purpose models for various vision-language tasks.
Retrieval augmentation techniques have proven to be effective plugins for both LLMs and MLLMs.
In this study, we propose multimodal adaptive Retrieval-Augmented Bootstrapping Language-Image Pre-training (RA-BLIP), a novel retrieval-augmented framework for various MLLMs.
arXiv Detail & Related papers (2024-10-18T03:45:19Z) - On-the-fly Modulation for Balanced Multimodal Learning [53.616094855778954]
Multimodal learning is expected to boost model performance by integrating information from different modalities.
The widely-used joint training strategy leads to imbalanced and under-optimized uni-modal representations.
We propose On-the-fly Prediction Modulation (OPM) and On-the-fly Gradient Modulation (OGM) strategies to modulate the optimization of each modality.
arXiv Detail & Related papers (2024-10-15T13:15:50Z) - Alt-MoE:A Scalable Framework for Bidirectional Multimodal Alignment and Efficient Knowledge Integration [6.928469290518152]
Multimodal learning has advanced significantly by aligning different modalities within shared latent spaces.
Direct alignment struggles to fully leverage rich intra-modal knowledge, often requiring extensive training data to achieve cross-modal representation.
We introduce Alt-MoE, a scalable multimodal alignment framework that employs a mixture of experts (MoE) model as a multi-directional connector across modalities.
arXiv Detail & Related papers (2024-09-09T10:40:50Z) - Advancing Prompt Learning through an External Layer [24.77977865016954]
We propose a paradigm called EnPrompt with a novel External Layer (EnLa)
The learnable external layer is built upon valid embeddings of pre-trained CLIP.
Four experiments demonstrate that our method outperforms the existing prompt learning method.
arXiv Detail & Related papers (2024-07-29T03:30:09Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - DPL: Decoupled Prompt Learning for Vision-Language Models [41.90997623029582]
We propose a new method, Decoupled Prompt Learning, which reformulates the attention in prompt learning to alleviate this problem.
Our approach is flexible for both visual and textual modalities, making it easily extendable to multi-modal prompt learning.
arXiv Detail & Related papers (2023-08-19T15:48:38Z) - MaPLe: Multi-modal Prompt Learning [54.96069171726668]
We propose Multi-modal Prompt Learning (MaPLe) for both vision and language branches to improve alignment between the vision and language representations.
Compared with the state-of-the-art method Co-CoOp, MaPLe exhibits favorable performance and achieves an absolute gain of 3.45% on novel classes.
arXiv Detail & Related papers (2022-10-06T17:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.