Thermal Annealing and Radiation Effects on Structural and Electrical Properties of NbN/GaN Superconductor/Semiconductor Junctions
- URL: http://arxiv.org/abs/2501.07780v1
- Date: Tue, 14 Jan 2025 01:37:21 GMT
- Title: Thermal Annealing and Radiation Effects on Structural and Electrical Properties of NbN/GaN Superconductor/Semiconductor Junctions
- Authors: Stephen Margiotta, Binzhi Liu, Saleh Ahmed Khan, Gabriel Calderon Ortiz, Ahmed Ibreljic, Jinwoo Hwang, A F M Anhar Uddin Bhuiyan,
- Abstract summary: Niobium nitride (NbN) superconductors have emerged as integral components in quantum computing.
This study investigates the impact of high-temperature annealing and high-dose gamma irradiation on the structural and superconducting properties of NbN films grown on GaN via reactive DC magnetron sputtering.
- Score: 0.4038539043067986
- License:
- Abstract: In the rapidly evolving field of quantum computing, niobium nitride (NbN) superconductors have emerged as integral components due to their unique structural properties, including a high superconducting transition temperature (Tc), exceptional electrical conductivity, and compatibility with advanced device architectures. This study investigates the impact of high-temperature annealing and high-dose gamma irradiation on the structural and superconducting properties of NbN films grown on GaN via reactive DC magnetron sputtering. The as-deposited cubic {\delta}-NbN (111) films exhibited a high-intensity XRD peak, high Tc of 12.82K, and an atomically flat surface. Annealing at 500 and 950 {\deg}C for varying durations revealed notable structural and surface changes. High-resolution STEM indicated improved local ordering, while AFM showed reduced surface roughness after annealing. XPS revealed a gradual increase in the Nb/N ratio with higher annealing temperatures and durations. High-resolution XRD and STEM analyses showed lattice constant modifications in {\delta}-NbN films, attributed to residual stress changes following annealing. Additionally, XRD phi-scans revealed sixfold symmetry in NbN films due to rotational domains relative to GaN. While Tc remained stable after annealing at 500 {\deg}C, increasing the annealing temperature to 950 {\deg}C degraded Tc to ~8K and reduced the residual resistivity ratio from 0.85 in as-deposited films to 0.29 after 30 minutes. The effects of gamma radiation (5 Mrad (Si)) were also studied, demonstrating minimal changes to crystallinity and superconducting performance, indicating excellent radiation resilience. These findings highlight the potential of NbN superconductors for integration into advanced quantum devices and their suitability for applications in radiation-intensive environments such as space, satellites, and nuclear power plants.
Related papers
- Origin of performance enhancement of superconducting nanowire single-photon detectors by He-ion irradiation [0.9674145073701153]
We study how changes in the underlying superconducting NbTiN film and the SiO2/Si substrate affect device performance.
Our results suggest that the irradiation-induced reduction of the thermal conductance significantly enhances SNSPD sensitivity.
arXiv Detail & Related papers (2025-01-24T22:55:14Z) - Development of TiN/AlN-based superconducting qubit components [1.8354412073143425]
fabrication of superconducting qubit components from titanium nitride (TiN) and aluminum nitride (AlN) layers.
Measurements of the dependence of the critical current of the TiN / AlN / TiN junctions yielded values ranging from 150 $mu$A to 2 $mu$A.
arXiv Detail & Related papers (2024-09-11T12:36:18Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Quasiparticle spectroscopy, transport, and magnetic properties of Nb
films used in superconducting transmon qubits [4.281703940559505]
Niobium thin films on silicon substrate used in the fabrication of superconducting qubits have been characterized.
The films show outstanding superconducting transition temperature of $T_c=9.35$ K and a fairly clean superconducting gap.
The response to the magnetic field is complicated, exhibiting significantly irreversible behavior and insufficient heat conductance.
arXiv Detail & Related papers (2022-07-23T22:45:23Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Discovery of Nb hydride precipitates in superconducting qubits [37.69303106863453]
We report the first evidence of the formation of niobium hydrides within niobium films on silicon in superconducting qubits fabricated at Rigetti Computing.
High-resolution transmission electron microscopy (HRTEM) analyses are performed at room and cryogenic temperatures (106 K) on superconducting qubit niobium film areas.
Our findings highlight a new previously unknown source of decoherence in superconducting qubits, contributing to both quasi and two-level system (TLS) losses.
arXiv Detail & Related papers (2021-08-23T20:01:38Z) - Measurement of the Low-temperature Loss Tangent of High-resistivity
Silicon with a High Q-factor Superconducting Resonator [58.720142291102135]
We present the direct loss tangent measurement of a high-resist intrinsicivity (100) silicon wafer in the temperature range from 70 mK to 1 K.
The measurement was performed using a technique that takes advantage of a high quality factor superconducting niobium resonator.
arXiv Detail & Related papers (2021-08-19T20:13:07Z) - Temperature insensitive type II quasi-phasematched spontaneous
parametric downconversion [62.997667081978825]
The temperature dependence of the refractive indices of potassium titanyl phosphate (KTP) are shown to enable quasi-phasematched type II spontaneous parametric downconversion.
We demonstrate the effect experimentally, observing temperature-insensitive degenerate emission at 1326nm, within the telecommunications O band.
This result has practical applications in the development of entangled photon sources for resource-constrained environments.
arXiv Detail & Related papers (2020-12-09T16:14:15Z) - Mechanical Decoupling of Quantum Emitters in Hexagonal Boron Nitride
from Low-Energy Phonon Modes [52.77024349608834]
Quantum emitters in hexagonal Boron Nitride (hBN) were recently reported to hol a homogeneous linewidth according to the Fourier-Transform limit up to room temperature.
This unusual observation was traced back to decoupling from in-plane phonon modes which can arise if the emitter is located between two planes of the hBN host material.
arXiv Detail & Related papers (2020-04-22T20:00:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.