Development of TiN/AlN-based superconducting qubit components
- URL: http://arxiv.org/abs/2409.07227v1
- Date: Wed, 11 Sep 2024 12:36:18 GMT
- Title: Development of TiN/AlN-based superconducting qubit components
- Authors: Benedikt Schoof, Moritz Singer, Simon Lang, Harsh Gupta, Daniela Zahn, Johannes Weber, Marc Tornow,
- Abstract summary: fabrication of superconducting qubit components from titanium nitride (TiN) and aluminum nitride (AlN) layers.
Measurements of the dependence of the critical current of the TiN / AlN / TiN junctions yielded values ranging from 150 $mu$A to 2 $mu$A.
- Score: 1.8354412073143425
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents the fabrication and characterization of superconducting qubit components from titanium nitride (TiN) and aluminum nitride (AlN) layers to create Josephson junctions and superconducting resonators in an all-nitride architecture. Our methodology comprises a complete process flow for the fabrication of TiN/AlN/TiN junctions, characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), ellipsometry and DC electrical measurements. We evaluated the sputtering rates of AlN under varied conditions, the critical temperatures of TiN thin films for different sputtering environments, and the internal quality factors of TiN resonators in the few-GHz regime, fabricated from these films. Overall, this offered insights into the material properties critical to qubit performance. Measurements of the dependence of the critical current of the TiN / AlN / TiN junctions yielded values ranging from 150 ${\mu}$A to 2 ${\mu}$A, for AlN barrier thicknesses up to ca. 5 nm, respectively. Our findings demonstrate advances in the fabrication of nitride-based superconducting qubit components, which may find applications in quantum computing technologies based on novel materials.
Related papers
- Single photon emitters in monolayer semiconductors coupled to transition metal dichalcogenide nanoantennas on silica and gold substrates [49.87501877273686]
Transition metal dichalcogenide (TMD) single photon emitters offer numerous advantages to quantum information applications.
Traditional materials used for the fabrication of nanoresonators, such as silicon or gallium phosphide (GaP), often require a high refractive index substrate.
Here, we use nanoantennas (NAs) fabricated from multilayer TMDs, which allow complete flexibility with the choice of substrate.
arXiv Detail & Related papers (2024-08-02T07:44:29Z) - SuperGaN: Synthesis of NbTiN/GaN/NbTiN Tunnel Junctions [0.0]
Nb-based circuits have broad applications in quantum-limited photon detectors, low-noise parametric amplifiers, superconducting digital logic circuits, and low-loss circuits for quantum computing.
NbTiN/AlN/NbTiN superconducting-insulating-superconducting junctions with an epitaxially grown AlN tunnel barrier.
Preliminary results of the first reported high-quality NbTiN/GaN/NbTiN heterojunctions with underdamped SIS I(V) characteristics.
arXiv Detail & Related papers (2023-09-26T17:50:17Z) - Characterizing Niobium Nitride Superconducting Microwave Coplanar
Waveguide Resonator Array for Circuit Quantum Electrodynamics in Extreme
Conditions [1.2627743222524832]
Niobium nitride (NbN) is a promising material for applications in superconducting quantum technology.
NbN-based devices and circuits are sensitive to decoherence sources such as two-level system (TLS) defects.
We numerically and experimentally investigate NbN superconducting microwave coplanar waveguide resonator arrays.
arXiv Detail & Related papers (2023-06-04T13:24:51Z) - Millikelvin measurements of permittivity and loss tangent of lithium
niobate [50.591267188664666]
Lithium niobate is an electro-optic material with many applications in microwave signal processing, communication, quantum sensing, and quantum computing.
We present findings on evaluating the complex electromagnetic permittivity of lithium niobate at millikelvin temperatures.
arXiv Detail & Related papers (2023-02-24T22:05:42Z) - Van der Waals Materials for Applications in Nanophotonics [49.66467977110429]
We present an emerging class of layered van der Waals (vdW) crystals as a viable nanophotonics platform.
We extract the dielectric response of 11 mechanically exfoliated thin-film (20-200 nm) van der Waals crystals, revealing high refractive indices up to n = 5.
We fabricate nanoantennas on SiO$$ and gold utilizing the compatibility of vdW thin films with a variety of substrates.
arXiv Detail & Related papers (2022-08-12T12:57:14Z) - Elucidating the local atomic and electronic structure of amorphous
oxidized superconducting niobium films [0.0]
Qubits made from superconducting materials are a mature platform for quantum information science application such as quantum computing.
This work identifies the structural and chemical composition of the oxide layer grown on Nb superconductors.
It shows that soft X-ray absorption can fingerprint magnetic impurities in these superconducting systems.
arXiv Detail & Related papers (2021-11-23T00:33:38Z) - TOF-SIMS Analysis of Decoherence Sources in Nb Superconducting
Resonators [48.7576911714538]
Superconducting qubits have emerged as a potentially foundational platform technology.
Material quality and interfacial structures continue to curb device performance.
Two-level system defects in the thin film and adjacent regions introduce noise and dissipate electromagnetic energy.
arXiv Detail & Related papers (2021-08-30T22:22:47Z) - Quantum Sensors for Microscopic Tunneling Systems [58.720142291102135]
tunneling Two-Level-Systems (TLS) are important for micro-fabricated quantum devices such as superconducting qubits.
We present a method to characterize individual TLS in virtually arbitrary materials deposited as thin-films.
Our approach opens avenues for quantum material spectroscopy to investigate the structure of tunneling defects.
arXiv Detail & Related papers (2020-11-29T09:57:50Z) - Comparison of Dielectric Loss in Titanium Nitride and Aluminum
Superconducting Resonators [45.82374977939355]
Lossy dielectrics are a significant source of decoherence in superconducting quantum circuits.
We fabricate isotropically trenched resonators to accentuate a specific dielectric region's contribution to resonator quality factor.
We evaluate the quality factor of each TiN resonator geometry with and without a post-process hydrofluoric (HF) etch, and find that it reduced losses from the substrate-air interface.
arXiv Detail & Related papers (2020-07-14T20:20:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.