論文の概要: Linearly Convergent Mixup Learning
- arxiv url: http://arxiv.org/abs/2501.07794v1
- Date: Tue, 14 Jan 2025 02:33:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-15 13:28:45.902279
- Title: Linearly Convergent Mixup Learning
- Title(参考訳): 線形収束混合学習
- Authors: Gakuto Obi, Ayato Saito, Yuto Sasaki, Tsuyoshi Kato,
- Abstract要約: より広い範囲のバイナリ分類モデルに拡張する2つの新しいアルゴリズムを提案する。
勾配に基づくアプローチとは異なり、我々のアルゴリズムは学習率のようなハイパーパラメータを必要とせず、実装と最適化を単純化する。
我々のアルゴリズムは、降下勾配法と比較して最適解への高速収束を実現し、ミックスアップデータの増大は、様々な損失関数の予測性能を一貫して改善する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Learning in the reproducing kernel Hilbert space (RKHS) such as the support vector machine has been recognized as a promising technique. It continues to be highly effective and competitive in numerous prediction tasks, particularly in settings where there is a shortage of training data or computational limitations exist. These methods are especially valued for their ability to work with small datasets and their interpretability. To address the issue of limited training data, mixup data augmentation, widely used in deep learning, has remained challenging to apply to learning in RKHS due to the generation of intermediate class labels. Although gradient descent methods handle these labels effectively, dual optimization approaches are typically not directly applicable. In this study, we present two novel algorithms that extend to a broader range of binary classification models. Unlike gradient-based approaches, our algorithms do not require hyperparameters like learning rates, simplifying their implementation and optimization. Both the number of iterations to converge and the computational cost per iteration scale linearly with respect to the dataset size. The numerical experiments demonstrate that our algorithms achieve faster convergence to the optimal solution compared to gradient descent approaches, and that mixup data augmentation consistently improves the predictive performance across various loss functions.
- Abstract(参考訳): 支持ベクトルマシンのような再生カーネルヒルベルト空間(RKHS)での学習は有望な技術として認識されている。
多くの予測タスク、特にトレーニングデータや計算制限が不足している環境では、非常に効果的で競争力がある。
これらの手法は、小さなデータセットと解釈可能性を扱う能力に特に価値がある。
限られたトレーニングデータの問題に対処するため、深層学習に広く用いられているミックスアップデータ拡張は、中間クラスラベルの生成により、RKHSの学習に適用することが困難である。
勾配降下法はこれらのラベルを効果的に扱うが、双対最適化法は一般に直接適用されない。
本研究では,より広い範囲のバイナリ分類モデルに拡張する2つの新しいアルゴリズムを提案する。
勾配に基づくアプローチとは異なり、我々のアルゴリズムは学習率のようなハイパーパラメータを必要とせず、実装と最適化を単純化する。
収束するイテレーションの数とイテレーション毎の計算コストは、データセットのサイズに関して線形にスケールする。
数値実験により, このアルゴリズムは勾配降下法よりも高速な解収束を実現し, 混合データ拡張により, 種々の損失関数間の予測性能が一貫的に向上することを示した。
関連論文リスト
- On Improving the Algorithm-, Model-, and Data- Efficiency of Self-Supervised Learning [18.318758111829386]
非パラメトリックなインスタンス識別に基づく効率的なシングルブランチSSL手法を提案する。
また,確率分布と正方形根版とのKL分散を最小限に抑える新しい自己蒸留損失を提案する。
論文 参考訳(メタデータ) (2024-04-30T06:39:04Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Interpolation-based Contrastive Learning for Few-Label Semi-Supervised
Learning [43.51182049644767]
半教師付き学習(SSL)は,ラベルが限定された強力なモデルを構築する上で,有効な手法であることが長年証明されてきた。
摂動サンプルを元のものと類似した予測を強制する正規化に基づく手法が注目されている。
本稿では,学習ネットワークの埋め込みを誘導し,サンプル間の線形変化を誘導する新たな対照的な損失を提案する。
論文 参考訳(メタデータ) (2022-02-24T06:00:05Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Dual Optimization for Kolmogorov Model Learning Using Enhanced Gradient
Descent [8.714458129632158]
コルモゴロフモデル(コルモゴロフモデル、英: Kolmogorov model、KM)は、確率変数の集合の基本的な確率構造を学ぶための解釈可能で予測可能な表現手法である。
正規化双対最適化と拡張勾配降下法(GD)を併用した計算スケーラブルなKM学習アルゴリズムを提案する。
提案したKM学習アルゴリズムを用いた論理的関係マイニングの精度は80%以上である。
論文 参考訳(メタデータ) (2021-07-11T10:33:02Z) - Population Gradients improve performance across data-sets and
architectures in object classification [6.17047113475566]
ニューラルネットワーク(NN)の学習中に勾配を計算する新しい手法を提案する。
アーキテクチャ、データセット、ハイパーパラメータ値、トレーニング長、モデルサイズにわたる最終的なパフォーマンスを大幅に改善する。
私たちがテストした広範囲な状況において有効であるのに加えて、パフォーマンスの向上(例えば、F1)は他の広範なパフォーマンス改善手法のどれよりも高いか高いかのどちらかです。
論文 参考訳(メタデータ) (2020-10-23T09:40:23Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
双線形問題に対処するために、CoGDアルゴリズム(Cogradient Descent Algorithm)を導入する。
一方の変数は、他方の変数との結合関係を考慮し、同期勾配降下をもたらす。
本アルゴリズムは,空間的制約下での1変数の問題を解くために応用される。
論文 参考訳(メタデータ) (2020-06-16T13:41:54Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
我々は、バリエーションのホストが、我々が提案する統一されたフレームワークでカバー可能であることを示す。
本稿では,この手法の収束性を証明し,ResNet,LSTM,Transformer上での経験的性能を厳格に評価する。
論文 参考訳(メタデータ) (2020-06-10T08:22:41Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。