Real-time Verification and Refinement of Language Model Text Generation
- URL: http://arxiv.org/abs/2501.07824v2
- Date: Mon, 17 Feb 2025 13:26:52 GMT
- Title: Real-time Verification and Refinement of Language Model Text Generation
- Authors: Joonho Ko, Jinheon Baek, Sung Ju Hwang,
- Abstract summary: Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks.
A critical challenge remains in that they sometimes generate factually incorrect answers.
We propose Streaming-VR, a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs.
- Score: 60.04718679054704
- License:
- Abstract: Large language models (LLMs) have shown remarkable performance across a wide range of natural language tasks. However, a critical challenge remains in that they sometimes generate factually incorrect answers. To address this, while many previous work has focused on identifying errors in their generation and further refining them, they are slow in deployment since they are designed to verify the response from LLMs only after their entire generation (from the first to last tokens) is done. Further, we observe that once LLMs generate incorrect tokens early on, there is a higher likelihood that subsequent tokens will also be factually incorrect. To this end, in this work, we propose Streaming-VR (Streaming Verification and Refinement), a novel approach designed to enhance the efficiency of verification and refinement of LLM outputs. Specifically, the proposed Streaming-VR enables on-the-fly verification and correction of tokens as they are being generated, similar to a streaming process, ensuring that each subset of tokens is checked and refined in real-time by another LLM as the LLM constructs its response. Through comprehensive evaluations on multiple datasets, we demonstrate that our approach not only enhances the factual accuracy of LLMs, but also offers a more efficient solution compared to prior refinement methods.
Related papers
- RAC: Efficient LLM Factuality Correction with Retrieval Augmentation [8.207682890286957]
Large Language Models (LLMs) exhibit impressive results across a wide range of natural language processing (NLP) tasks, yet they can often produce factually incorrect outputs.
This paper introduces a simple but effective low-latency post-correction method, textbfRetrieval Augmented Correction (RAC), aimed at enhancing the factual performance of LLMs without requiring additional fine-tuning.
arXiv Detail & Related papers (2024-10-21T06:11:38Z) - Robustness of LLMs to Perturbations in Text [2.0670689746336]
Large language models (LLMs) have shown impressive performance, but can they handle the inevitable noise in real-world data?
This work tackles this critical question by investigating LLMs' resilience against morphological variations in text.
Our findings show that contrary to popular beliefs, generative LLMs are quiet robust to noisy perturbations in text.
arXiv Detail & Related papers (2024-07-12T04:50:17Z) - FIRST: Faster Improved Listwise Reranking with Single Token Decoding [56.727761901751194]
First, we introduce FIRST, a novel listwise LLM reranking approach leveraging the output logits of the first generated identifier to directly obtain a ranked ordering of the candidates.
Empirical results demonstrate that FIRST accelerates inference by 50% while maintaining a robust ranking performance with gains across the BEIR benchmark.
Our results show that LLM rerankers can provide a stronger distillation signal compared to cross-encoders, yielding substantial improvements in retriever recall after relevance feedback.
arXiv Detail & Related papers (2024-06-21T21:27:50Z) - One Token Can Help! Learning Scalable and Pluggable Virtual Tokens for Retrieval-Augmented Large Language Models [67.49462724595445]
Retrieval-augmented generation (RAG) is a promising way to improve large language models (LLMs)
We propose a novel method that involves learning scalable and pluggable virtual tokens for RAG.
arXiv Detail & Related papers (2024-05-30T03:44:54Z) - Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization [12.885866125783618]
Large Language Models (LLMs) tend to produce inaccurate responses to specific queries.
We construct an adversarial dataset, named as $textbfADT (Adrial dataset for Tokenizer)$ to challenge LLMs' tokenization.
Our empirical results reveal that our ADT is highly effective on challenging the tokenization of leading LLMs, including GPT-4o, Llama-3, Qwen2.5-max and so on.
arXiv Detail & Related papers (2024-05-27T11:39:59Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
Recent large language models (LLM) are leveraging human feedback to improve their generation quality.
We propose LLMRefine, an inference time optimization method to refine LLM's output.
We conduct experiments on three text generation tasks, including machine translation, long-form question answering (QA), and topical summarization.
LLMRefine consistently outperforms all baseline approaches, achieving improvements up to 1.7 MetricX points on translation tasks, 8.1 ROUGE-L on ASQA, 2.2 ROUGE-L on topical summarization.
arXiv Detail & Related papers (2023-11-15T19:52:11Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
Large language models (LLMs) are prone to hallucinations, generating content that deviates from facts seen during pretraining.
We propose a simple decoding strategy for reducing hallucinations with pretrained LLMs.
We find that this Decoding by Contrasting Layers (DoLa) approach is able to better surface factual knowledge and reduce the generation of incorrect facts.
arXiv Detail & Related papers (2023-09-07T17:45:31Z) - Validating Large Language Models with ReLM [11.552979853457117]
Large language models (LLMs) have been touted for their ability to generate natural-sounding text.
There are growing concerns around possible negative effects of LLMs such as data memorization, bias, and inappropriate language.
We introduce ReLM, a system for validating and querying LLMs using standard regular expressions.
arXiv Detail & Related papers (2022-11-21T21:40:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.