Prediction Interval Construction Method for Electricity Prices
- URL: http://arxiv.org/abs/2501.07827v1
- Date: Tue, 14 Jan 2025 04:02:08 GMT
- Title: Prediction Interval Construction Method for Electricity Prices
- Authors: Xin Lu,
- Abstract summary: A conditional generative adversarial network is first presented to generate electricity price scenarios.
Different generated scenarios are stacked to obtain the probability densities, which can be applied to accurately reflect the uncertainty of electricity prices.
A reinforced prediction mechanism based on the volatility level of weather factors is introduced to address the spikes or volatile prices.
- Score: 4.194844503412904
- License:
- Abstract: Accurate prediction of electricity prices plays an essential role in the electricity market. To reflect the uncertainty of electricity prices, price intervals are predicted. This paper proposes a novel prediction interval construction method. A conditional generative adversarial network is first presented to generate electricity price scenarios, with which the prediction intervals can be constructed. Then, different generated scenarios are stacked to obtain the probability densities, which can be applied to accurately reflect the uncertainty of electricity prices. Furthermore, a reinforced prediction mechanism based on the volatility level of weather factors is introduced to address the spikes or volatile prices. A case study is conducted to verify the effectiveness of the proposed novel prediction interval construction method. The method can also provide the probability density of each price scenario within the prediction interval and has the superiority to address the volatile prices and price spikes with a reinforced prediction mechanism.
Related papers
- Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market [0.0]
integration of renewable energy into electricity markets poses significant challenges to price stability.
This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques.
We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques.
arXiv Detail & Related papers (2025-02-07T13:57:47Z) - Forecasting Symmetric Random Walks: A Fusion Approach [6.935130578959931]
This study focuses on symmetric random walks, in which the target variable's future value is reformulated as a combination of its future movement and current value.
The proposed forecasting method, termed the fusion of movement and na"ive predictions (FMNP), is grounded in this reformulation.
FMNP achieves statistically significant improvements over na"ive prediction, even when the movement prediction accuracy is only slightly above 0.50.
arXiv Detail & Related papers (2024-06-20T16:32:18Z) - Revisiting Day-ahead Electricity Price: Simple Model Save Millions [7.088576782842557]
We propose a simple piecewise linear model that significantly enhances forecast accuracy by directly deriving prices from readily forecastable demand-supply values.
Experiments in the day-ahead electricity markets of Shanxi province and ISO New England reveal that such forecasts could potentially save residents millions of dollars a year.
arXiv Detail & Related papers (2024-05-20T08:27:14Z) - Postprocessing of point predictions for probabilistic forecasting of day-ahead electricity prices: The benefits of using isotonic distributional regression [0.0]
We examine three postprocessing methods for converting point forecasts of day-ahead electricity prices into probabilistic ones.
We find that while the latter demonstrates the most varied behavior, it contributes the most to the ensemble of the predictive distributions.
Remarkably, the performance of the combination is superior to that of state-of-the-art Distributional Deep Neural Networks over two 4.5-year test periods from the German and Spanish power markets.
arXiv Detail & Related papers (2024-04-02T19:50:36Z) - Bayesian Hierarchical Probabilistic Forecasting of Intraday Electricity Prices [0.0]
This study presents the first Bayesian forecasting of electricity prices traded on the German intraday market.
The target variable is the IDFull price index, with forecasts given as posterior predictive distributions.
We observe significant improvements in point measures and probability scores, including an average reduction of $5.9,%$ in absolute errors.
arXiv Detail & Related papers (2024-03-08T16:51:27Z) - Generative Probabilistic Time Series Forecasting and Applications in
Grid Operations [47.19756484695248]
Generative probabilistic forecasting produces future time series samples according to the conditional probability distribution given past time series observations.
We propose a weak innovation autoencoder architecture and a learning algorithm to extract independent and identically distributed innovation sequences.
We show that the weak innovation sequence is Bayesian sufficient, which makes the proposed weak innovation autoencoder a canonical architecture for generative probabilistic forecasting.
arXiv Detail & Related papers (2024-02-21T15:23:21Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Price-Aware Deep Learning for Electricity Markets [58.3214356145985]
We propose to embed electricity market-clearing optimization as a deep learning layer.
Differentiating through this layer allows for balancing between prediction and pricing errors.
We showcase the price-aware deep learning in the nexus of wind power forecasting and short-term electricity market clearing.
arXiv Detail & Related papers (2023-08-02T21:16:05Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - CovarianceNet: Conditional Generative Model for Correct Covariance
Prediction in Human Motion Prediction [71.31516599226606]
We present a new method to correctly predict the uncertainty associated with the predicted distribution of future trajectories.
Our approach, CovariaceNet, is based on a Conditional Generative Model with Gaussian latent variables.
arXiv Detail & Related papers (2021-09-07T09:38:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.