Optimizing Language Models for Grammatical Acceptability: A Comparative Study of Fine-Tuning Techniques
- URL: http://arxiv.org/abs/2501.07853v1
- Date: Tue, 14 Jan 2025 05:41:09 GMT
- Title: Optimizing Language Models for Grammatical Acceptability: A Comparative Study of Fine-Tuning Techniques
- Authors: Shobhit Ratan, Farley Knight, Ghada Jerfel, Sze Chung Ho,
- Abstract summary: This study explores the fine-tuning (FT) of the Open Pre-trained Transformer (OPT-125M) for grammatical tasks using the CoLA dataset.
- Score: 0.0
- License:
- Abstract: This study explores the fine-tuning (FT) of the Open Pre-trained Transformer (OPT-125M) for grammatical acceptability tasks using the CoLA dataset. By comparing Vanilla-Fine-Tuning (VFT), Pattern-Based-Fine-Tuning (PBFT), and Parameter-Efficient Fine-Tuning techniques (PEFT) like Low-Rank Adaptation (LoRA), we demonstrate significant improvements in computational efficiency while maintaining high accuracy. Our experiments reveal that while VFT achieves the highest accuracy (81.2%), LoRA enhancing FT by reducing memory usage and iteration time by more than 50%, and increases accuracy in PBFT case. Context Distillation (CD), though computationally efficient, underperformed with accuracy around 31%. Our findings contribute to democratizing access to large language models (LLM) by reducing computational barriers.
Related papers
- Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models [40.69348434971122]
We propose FedARA, a novel Federated Adaptive Rank Allocation for parameter-efficient fine-tuning of language models.
FedARA consistently outperforms weak baselines by an average of 8.49% and strong baselines by 6.95% across various datasets under data heterogeneity.
Experiments on AGX Orin, Orin Nano and Raspberry Pi 5 devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90% and 46.95%, respectively.
arXiv Detail & Related papers (2025-01-24T11:19:07Z) - Adaptive Data Exploitation in Deep Reinforcement Learning [50.53705050673944]
We introduce ADEPT, a powerful framework to enhance the **data efficiency** and **generalization** in deep reinforcement learning (RL)
Specifically, ADEPT adaptively manages the use of sampled data across different learning stages via multi-armed bandit (MAB) algorithms.
We test ADEPT on benchmarks including Procgen, MiniGrid, and PyBullet.
arXiv Detail & Related papers (2025-01-22T04:01:17Z) - Parameter-Efficient Fine-Tuning via Selective Discrete Cosine Transform [10.565509997395504]
We propose a novel Selective Discrete Cosine Transformation (sDCTFT) fine-tuning scheme to push this frontier.
Its general idea is to exploit the superior energy compaction and decorrelation properties of DCT.
Experiments on four benchmark datasets demonstrate the superior accuracy, reduced computational cost, and lower storage requirements.
arXiv Detail & Related papers (2024-10-09T16:07:42Z) - Sparse Matrix in Large Language Model Fine-tuning [1.9874264019909988]
We introduce a method for selecting sparse sub-matrices that aim to minimize the performance gap between PEFT vs. full fine-tuning.
In experiments, we demonstrate that our method consistently surpasses other PEFT baselines.
We also examine how the performance of LoRA and DoRA tends to plateau and decline as the number of trainable parameters increases.
arXiv Detail & Related papers (2024-05-24T13:12:14Z) - FeDeRA:Efficient Fine-tuning of Language Models in Federated Learning Leveraging Weight Decomposition [7.229494183462913]
Despite exceptional performance after fine-tuning, pre-trained language models (PLMs) face significant challenges due to privacy concerns.
We consider federated learning (FL) to fine-tune PLMs in this paper.
One promising solution is to exploit parameter-efficient fine-tuning (PEFT) into FL, which trains a much smaller set of parameters than full parameter fine-tuning (FFT)
arXiv Detail & Related papers (2024-04-29T16:42:26Z) - From PEFT to DEFT: Parameter Efficient Finetuning for Reducing Activation Density in Transformers [52.199303258423306]
We propose a novel density loss that encourages higher activation sparsity in pre-trained models.
Our proposed method, textbfDEFT, can consistently reduce activation density by up to textbf44.94% on RoBERTa$_mathrmLarge$ and by textbf53.19% (encoder density) and textbf90.60% (decoder density) on Flan-T5$_mathrmXXL$.
arXiv Detail & Related papers (2024-02-02T21:25:46Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - Scaling Relationship on Learning Mathematical Reasoning with Large
Language Models [75.29595679428105]
We investigate how the pre-training loss, supervised data amount, and augmented data amount influence the reasoning performances of a supervised LLM.
We find that rejection samples from multiple models push LLaMA-7B to an accuracy of 49.3% on GSM8K which outperforms the supervised fine-tuning (SFT) accuracy of 35.9% significantly.
arXiv Detail & Related papers (2023-08-03T15:34:01Z) - Scaling & Shifting Your Features: A New Baseline for Efficient Model
Tuning [126.84770886628833]
Existing finetuning methods either tune all parameters of the pretrained model (full finetuning) or only tune the last linear layer (linear probing)
We propose a new parameter-efficient finetuning method termed as SSF, representing that researchers only need to Scale and Shift the deep Features extracted by a pre-trained model to catch up with the performance full finetuning.
arXiv Detail & Related papers (2022-10-17T08:14:49Z) - Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than
In-Context Learning [81.3514358542452]
Few-shot in-context learning (ICL) incurs substantial computational, memory, and storage costs because it involves processing all of the training examples every time a prediction is made.
parameter-efficient fine-tuning offers an alternative paradigm where a small set of parameters are trained to enable a model to perform the new task.
In this paper, we rigorously compare few-shot ICL and parameter-efficient fine-tuning and demonstrate that the latter offers better accuracy as well as dramatically lower computational costs.
arXiv Detail & Related papers (2022-05-11T17:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.