Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models
- URL: http://arxiv.org/abs/2501.14406v2
- Date: Sat, 01 Mar 2025 17:30:25 GMT
- Title: Adaptive Rank Allocation for Federated Parameter-Efficient Fine-Tuning of Language Models
- Authors: Fei Wu, Jia Hu, Geyong Min, Shiqiang Wang,
- Abstract summary: We propose FedARA, a novel Adaptive Rank Allocation framework for federated parameter-efficient fine-tuning of language models.<n>FedARA consistently outperforms baselines by an average of 6.95% to 8.49% across various datasets and models under heterogeneous data.<n>Experiments on various edge devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90% and 46.95%, respectively.
- Score: 40.69348434971122
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pre-trained Language Models (PLMs) have demonstrated their superiority and versatility in modern Natural Language Processing (NLP), effectively adapting to various downstream tasks through further fine-tuning. Federated Parameter-Efficient Fine-Tuning (FedPEFT) has emerged as a promising solution to address privacy and efficiency challenges in distributed training for PLMs on resource-constrained local devices. However, our measurements reveal two key limitations of FedPEFT: heterogeneous data across devices leads to significant performance degradation, and a fixed parameter configuration results in communication inefficiency. To overcome these limitations, we propose FedARA, a novel Adaptive Rank Allocation framework for federated parameter-efficient fine-tuning of language models. Specifically, FedARA employs truncated Singular Value Decomposition (SVD) adaptation to enhance similar feature representation across clients, significantly mitigating the adverse effects of data heterogeneity. Subsequently, it utilizes dynamic rank allocation to progressively identify critical ranks, effectively improving communication efficiency. Lastly, it leverages rank-based module pruning to automatically remove inactive modules, steadily reducing local computational cost and memory usage in each federated learning round. Extensive experiments show that FedARA consistently outperforms baselines by an average of 6.95% to 8.49% across various datasets and models under heterogeneous data while significantly improving communication efficiency by 2.40$ \times$. Moreover, experiments on various edge devices demonstrate substantial decreases in total training time and energy consumption by up to 48.90% and 46.95%, respectively.
Related papers
- Efficient Federated Fine-Tuning of Large Language Models with Layer Dropout [15.009864792277236]
Fine-tuning plays a crucial role in enabling pre-trained LLMs to evolve from general language comprehension to task-specific expertise.
This work proposes DropPEFT, an innovative federated PEFT framework that employs a novel transformer dropout method.
We show that DropPEFT can achieve a 1.3-6.3times speedup in model convergence and a 40%-67% reduction in memory footprint.
arXiv Detail & Related papers (2025-03-13T09:59:16Z) - Efficient Deployment of Large Language Models on Resource-constrained Devices [12.644230479753476]
It is necessary to fine-tune Large Language Models (LLMs) on resource-constrained devices for various downstream tasks.<n>FedSpine is a framework that combines Efficient Fine-Tuning (PEFT) with structured pruning for efficient deployment of LLMs on resource-constrained devices.<n>We show that FedSpine can speed up fine-tuning by 1.4times$$$times and improve final accuracy by 0.4%-4.5% under the same sparsity level compared to other baselines.
arXiv Detail & Related papers (2025-01-05T04:38:11Z) - Fisher Information-based Efficient Curriculum Federated Learning with Large Language Models [43.26028399395612]
We propose a Fisher Information-based Efficient Curriculum Federated Learning framework (FibecFed) with two novel methods.
First, we propose a fisher information-based method to adaptively sample data within each device to improve the effectiveness of the FL fine-tuning process.
Second, we dynamically select the proper layers for global aggregation and sparse parameters for local update with LoRA.
arXiv Detail & Related papers (2024-09-30T18:12:18Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - Filling the Missing: Exploring Generative AI for Enhanced Federated
Learning over Heterogeneous Mobile Edge Devices [72.61177465035031]
We propose a generative AI-empowered federated learning to address these challenges by leveraging the idea of FIlling the MIssing (FIMI) portion of local data.
Experiment results demonstrate that FIMI can save up to 50% of the device-side energy to achieve the target global test accuracy.
arXiv Detail & Related papers (2023-10-21T12:07:04Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models [28.764782216513037]
Federated Learning (FL) can benefit from distributed and private data of the FL edge clients for fine-tuning.
We propose a method called SLoRA, which overcomes the key limitations of LoRA in high heterogeneous data scenarios.
Our experimental results demonstrate that SLoRA achieves performance comparable to full fine-tuning.
arXiv Detail & Related papers (2023-08-12T10:33:57Z) - FedDUAP: Federated Learning with Dynamic Update and Adaptive Pruning
Using Shared Data on the Server [64.94942635929284]
Federated Learning (FL) suffers from two critical challenges, i.e., limited computational resources and low training efficiency.
We propose a novel FL framework, FedDUAP, to exploit the insensitive data on the server and the decentralized data in edge devices.
By integrating the two original techniques together, our proposed FL model, FedDUAP, significantly outperforms baseline approaches in terms of accuracy (up to 4.8% higher), efficiency (up to 2.8 times faster), and computational cost (up to 61.9% smaller)
arXiv Detail & Related papers (2022-04-25T10:00:00Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.