Optimal Classification Trees for Continuous Feature Data Using Dynamic Programming with Branch-and-Bound
- URL: http://arxiv.org/abs/2501.07903v1
- Date: Tue, 14 Jan 2025 07:46:33 GMT
- Title: Optimal Classification Trees for Continuous Feature Data Using Dynamic Programming with Branch-and-Bound
- Authors: Catalin E. Brita, Jacobus G. M. van der Linden, Emir Demirović,
- Abstract summary: An optimal classification tree that maximizes training performance within a given size limit is NP-hard, and in practice, most state-of-the-art methods do not scale beyond computing optimal trees of depth three.
We propose a novel algorithm that optimize trees directly on the continuous feature data using dynamic programming with branch-and-bound.
Our experiments demonstrate that these techniques improve runtime by one or more orders of magnitude over state-of-the-art optimal methods and improve test accuracy by 5% over greedys.
- Score: 1.3654846342364308
- License:
- Abstract: Computing an optimal classification tree that provably maximizes training performance within a given size limit, is NP-hard, and in practice, most state-of-the-art methods do not scale beyond computing optimal trees of depth three. Therefore, most methods rely on a coarse binarization of continuous features to maintain scalability. We propose a novel algorithm that optimizes trees directly on the continuous feature data using dynamic programming with branch-and-bound. We develop new pruning techniques that eliminate many sub-optimal splits in the search when similar to previously computed splits and we provide an efficient subroutine for computing optimal depth-two trees. Our experiments demonstrate that these techniques improve runtime by one or more orders of magnitude over state-of-the-art optimal methods and improve test accuracy by 5% over greedy heuristics.
Related papers
- Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
We propose a Deep Tree-based Retriever (DTR) for efficient recommendation.
DTR frames the training task as a softmax-based multi-class classification over tree nodes at the same level.
To mitigate the suboptimality induced by the labeling of non-leaf nodes, we propose a rectification method for the loss function.
arXiv Detail & Related papers (2024-08-21T05:09:53Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Efficient Non-Parametric Optimizer Search for Diverse Tasks [93.64739408827604]
We present the first efficient scalable and general framework that can directly search on the tasks of interest.
Inspired by the innate tree structure of the underlying math expressions, we re-arrange the spaces into a super-tree.
We adopt an adaptation of the Monte Carlo method to tree search, equipped with rejection sampling and equivalent- form detection.
arXiv Detail & Related papers (2022-09-27T17:51:31Z) - Tree ensemble kernels for Bayesian optimization with known constraints
over mixed-feature spaces [54.58348769621782]
Tree ensembles can be well-suited for black-box optimization tasks such as algorithm tuning and neural architecture search.
Two well-known challenges in using tree ensembles for black-box optimization are (i) effectively quantifying model uncertainty for exploration and (ii) optimizing over the piece-wise constant acquisition function.
Our framework performs as well as state-of-the-art methods for unconstrained black-box optimization over continuous/discrete features and outperforms competing methods for problems combining mixed-variable feature spaces and known input constraints.
arXiv Detail & Related papers (2022-07-02T16:59:37Z) - Quant-BnB: A Scalable Branch-and-Bound Method for Optimal Decision Trees
with Continuous Features [5.663538370244174]
We present a new discrete optimization method based on branch-and-bound (BnB) to obtain optimal decision trees.
Our proposed algorithm Quant-BnB shows significant speedups compared to existing approaches for shallow optimal trees on various real datasets.
arXiv Detail & Related papers (2022-06-23T17:19:29Z) - Optimal Decision Trees for Nonlinear Metrics [42.18286681448184]
We show a novel algorithm for producing optimal trees for nonlinear metrics.
To the best of our knowledge, this is the first method to compute provably optimal decision trees for nonlinear metrics.
Our approach leads to a trade-off when compared to optimising linear metrics.
arXiv Detail & Related papers (2020-09-15T08:30:56Z) - MurTree: Optimal Classification Trees via Dynamic Programming and Search [61.817059565926336]
We present a novel algorithm for learning optimal classification trees based on dynamic programming and search.
Our approach uses only a fraction of the time required by the state-of-the-art and can handle datasets with tens of thousands of instances.
arXiv Detail & Related papers (2020-07-24T17:06:55Z) - Generalized and Scalable Optimal Sparse Decision Trees [56.35541305670828]
We present techniques that produce optimal decision trees over a variety of objectives.
We also introduce a scalable algorithm that produces provably optimal results in the presence of continuous variables.
arXiv Detail & Related papers (2020-06-15T19:00:11Z) - Learning Optimal Classification Trees: Strong Max-Flow Formulations [8.10995244893652]
We propose a flow-based MIP formulation for optimal binary classification trees with a stronger linear programming relaxation.
Our formulation presents an attractive decomposable structure. We exploit this structure and max-flow/min-cut duality to derive a Benders' decomposition method.
arXiv Detail & Related papers (2020-02-21T05:58:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.